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Abstract—This report explores how early detection of the
onset of sepsis can be achieved through interpretable data
science methods that reflect real-world ICU conditions. Using
multivariate, hourly time series data from two hospital datasets
comprising more than 40,000 ICU patients, we implemented a
complete data pipeline, from cleaning and exploration to model
development and visualisation.

Feature engineering focused on the dynamic nature of sepsis
progression, with an emphasis on change-based metrics such as
deltas and clinically used medical scores to help track degra-
dation. Statistical tools, including Jensen-Shannon Divergence
and Correlation Dendrograms, were applied to guide feature
selection, helping visualise mathematical trends and feature
clusters.

The final output was a real-time dashboard showing a patient’s
sepsis risk timeline. This interface continuously estimates patient
risk, flagging high-risk intervals to help support proactive clinical
decision-making. At the hour of peak risk, a SHAP summary plot
is generated to highlight the top five contributing characteristics,
offering interpretable case-specific explanations to clinicians.
Together, these tools aim to bridge the gap between algorithmic
prediction and bedside utility.

I. INTRODUCTION

Sepsis is a highly lethal condition in which the body re-
sponds improperly to the presence of harmful microorganisms
in the blood or other tissues. Its subtle onset and rapid
progression pose a major clinical challenge. In many cases,
diagnosis is delayed or missed, contributing to high mortality
rates of 20-40% [1]. Every hour of delayed diagnosis increases
the risk of death by 4-8% [2]. Sepsis also places a significant
economic burden on healthcare systems, with annual U.S.
costs estimated at approximately $20 billion [3]. As one of
the most resource-intensive conditions treated in hospitals, it
remains a central clinical research focus. Early identification
and timely intervention are critical to improving outcomes,
reducing intensive care unit (ICU) stays, and saving lives.

This project is built around the 2019 PhysioNet Computing
in Cardiology Challenge, which focuses on the early prediction
of sepsis using multivariate time-series data collected from
intensive care units (ICUs) [4]. The two datasets provided
contain vital signs, laboratory values, and demographic infor-
mation, with each patient’s condition annotated hourly with a
binary sepsis label.

The primary motivation behind this work is to provide
clinicians with interpretable, real-time insights that support
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early intervention and improve decision-making. We offer
an informative model and dashboard, which clinicians can
validate, challenge, and refine using their expertise. While
recent advances in medical Al have delivered impressive pre-
dictive performance, many of these systems operate as black
boxes, limiting clinical trust and adoption. There is growing
recognition that medical Al must shift toward transparent and
accessible tools to enhance clinical utility [5].

II. LITERATURE REVIEW

The official classification of sepsis is a two-point degra-
dation in SOFA score [6]. In addition to this, during initial
research, we found early symptoms of sepsis include a fever,
leading to an elevated temperature, along with fluid within
the lungs [7]. Combining these ideas, sepsis was a problem
that could theoretically be approached from a mathematical
and medical viewpoint. We explored the focuses of notable
approaches from the 2019 Computing in Cardiology Chal-
lenge [8]-[12], which all come at the sepsis problem from a
purely machine learning angle. These aim to maximise metrics
such as area under curve (AUC) [13] and the utility score
provided by the challenge. We realised there was a research
gap for a medically focused and clinically applicable project.
Our work builds upon previous challenge submissions, aiming
to provide an algorithmic prediction and help clinicians in
bedside hospital scenarios.

III. INITIAL EXPLORATION
A. Dataset Overview

This study uses ICU datasets from two independent hospital
systems, Hospital A and Hospital B, each containing time-
series patient records with 40 physiological, laboratory, and
demographic features sampled hourly. A binary indicator at
each time step denotes the presence or absence of sepsis. The
datasets are summarised below in Table 1.

TABLE I: Dataset Summary Statistics

Characteristic Hospital A | Hospital B | Combined
Total Patients 20,336 20,000 40,336
Septic Patients 1,790 1,142 2,932
Sepsis Rate (%) 8.80 5.71 7.26
Total Observations 790,215 761,995 1,552,210

Median ICU Stay (hours) 40 38 39
Sepsis Onset Time (avg hours) 50.97 50.78 50.87
Data Completeness (%) 33.40 33.10 33.25




To simulate realistic ICU conditions, the datasets exhibit
substantial heterogeneity in data completeness. Vital signs
(e.g., heart rate, respiratory rate) are generally complete,
whereas laboratory results (e.g., bilirubin, creatinine) are often
missing due to infrequent clinical testing. In addition, in the
combined dataset, from 40,336 patients, 7.27% were sepsis
cases (SepsisLabel = 1), and from the 1,552,210 row only
1.8% were sepsis cases. These both acted to show there was a
significant class imbalance between sepsis and non-sepsis data,
requiring considerations throughout the model development
process.

B. Sepsis Label Smoothening

For sepsis cases, we are given a 6-hour delay between the
dataset sepsisLabel elevating to one and the actual time of
sepsis onset. This transition from sepsisLabel = 0 to 1 occurs
instantly. However, in clinical practice, it is worth noting that
exact onset times are uncertain due to diagnosis delays, so a
smoothening approach using continuous probabilities would
likely better model real-world scenarios (Equation I). While
we retained binary labelling for model simplicity, we identified
this as a potential area for future improvement.
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C. Jensen-Shannon Divergence

Initial checks were required to ensure significant similarity
across the two datasets, allowing them to be combined. The
Jensen-Shannon Divergence [14] is plotted in Figure 1, based
on the Kullback—Leibler divergence, a method used to measure
the similarity between two probability distributions. Most
features showed low JSD values (below 0.1), indicating high
alignment and confirming their similarity. Features such as
Temp and BaseExcess had somewhat elevated JSD values,
potentially because the hospitals had different frequencies with
which they measured these or specific clinical practices, which
were reviewed again during feature selection. Ultimately, no
features ended up being filtered based on JSD but these checks
helped provide confidence in integration.
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Fig. 1: Jensen-Shannon Divergence - Hospital A and B

D. Dataset Auto-Correlation

For training models, highly correlated features are stan-
dardly removed. This is because they contain similar infor-
mation, so they act to increase model complexity with no real
gain in predictive power and can lead to overfitting instead. We
plotted a correlation heat map within the dataset in Figure 2,
focusing on features above 0.25 auto-correlation. We selected
this threshold to handle the sensitivity to linear relationships
and minimise noise, finding many that fit this criterion. Based
on these findings we suspected further checks would need to
be carried out to reduce multicollinearity in our dataset.
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Fig. 2: Feature Correlation Heat Map

Most grid spaces were blank, with most features only highly
correlated with specific others. We spotted notable correlation
relationships, including examples such as MAP, SBP, and DBP,
as well as Hct and Hgb. A correlation dendrogram in Figure
3 helped to further explore these relationships, showing hi-
erarchy using Ward distance [15]. This hierarchical clustering
showed features we could safely aggregate or remove, keeping
the majority of information and pruning redundant features.

Feature Correlation Dendrogram
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Fig. 3: Feature Correlation Dendrogram



E. Temporal Trends

Finally, we observed the temporal relationship for certain
features, noticing specifically that the most continuous fea-
tures, like heart rate, showed shifted averages and greater
volatility for patients with sepsis in comparison. In Figure 4,
both the average HR and the standard error associated with that
value (SEM) [16] are plotted for each value of the intensive
care length of stay (ICULOS). The SEM helpfully shows the
variability across the population for each time step. The plot
shows that sepsis patients with prolonged ICU stays often
exhibit extreme heart rates, as well as similar other features,
implying instability increases in latter-stage sepsis. This hinted
at the usefulness of comparing changes in such features, not
just their absolute values, namely delta values discussed later.
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Fig. 4: Heart Rate Temporal Trends

F. Additional Methods Trialled

We also carried out additional exploration methods that,
although sometimes suggested in professional practice and
lectures, led to no fruitful conclusions. These included the
Mann Whitney U-test [17] for correlation; non-continuous
means; Box and Whisker Plots [18] and Linear Correlation
metrics (Pearson [19], Spearman [20] and Kendall [21]). As an
example, this discussed linear correlation for the ’continuous’
features is shown in Figure 5. The values being no greater
in magnitude than 0.05 highlights that the sepsis relationships
are more complicated than simply linear. Finally, although in
machine learning practice, PCA is often used, the extensive
amount of missing data in key features didn’t allow for this.
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Fig. 5: Feature correlation

IV. DATA PREPARATION
A. Medical Equations

We had suspicions that mathematical relationships under-
pinned the highly correlated features in the dendrogram (Fig-
ure 3). After research [22], [23], [24], [25] we found several
clinically used mappings defined below in Equations 2,3,4,5.
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After identifying these relationships, we needed to establish
whether they aligned with our previous data. Comparing equa-
tion probability distributions to rows containing all equation
features confirmed this trend, as shown in Figure 6.
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Fig. 6: True vs Imputed Distributions

These allow for clinically grounded imputation, which is far
more accurate than statistical methods. In particular, Equation
2 was a particularly eye-opening discovery, as for Hospital
A, DBP had a proportionally increased missingness compared
to both SBP and MAP, allowing those values to help fill in
DBP. The results of clinical equation imputation are displayed
below in Figure 7, showing marked missingness reductions.

by Feature (Before & After Medical Calculations)
= -

Missingness (%)

Fig. 7: Medical Missingness Reduction



However, medical imputation had to be handled carefully,
as this had the potential to introduce artificial correlation and
amplify feature redundancy when training models. In partic-
ular, when we initially implemented both XGBoost [26] and
LightGBM [27], we discovered that they handle NaN values
natively so excessively reducing missingness was unnecessary.
It is also often practiced that features with above 95% missing
data are discarded; however, because these models rigorously
handle NaN values, we opted not to employ this approach.

B. Simple Medical Scores

We also explored feature engineering using established
equations deriving new features including Shock Index, Pulse
Pressure, SaOs /FiO, ratio, BUN /Creatinine ratio and various
clinical flags. An example is shown below in Equation 6.

Heart Rate (HR)

ShockIndex = 6
ockindex Systolic Blood Pressure (SBP) ©)

C. Complex Medical Scores

Alongside these, we harnessed the power of medically
used patient health scores, such as SIRS, to help show the
state the patient is currently in. Many of these scores are
made up of feature considerations we lacked in our dataset,
namely qSOFA, SOFA, MEWS, and NEWS2, for which we
implemented partial versions of these scores best using the
features we had. An example is displayed below in Equation
7 showing the components for the PartiaNEWS?2 engineered
score.

SPartialNEWS2 = SResp +5028at +STemp +SsBp +Sur +SFio, (7)

Further breaking this down, a single component is fleshed
out in Equation 8, where the margins for the temperature
component are demonstrated.

3, if Temp < 35.0
1, if 35.0 < Temp < 36.0
STemp = § 1, if 38.0 < Temp < 39.0 ®)
2, if Temp > 39.0
0, otherwise

D. Imputation

We explored various imputation methods to deal with the
high level of missing data within our dataset. Broadly, for-
ward and backward fill might be more appropriate for the
sparse laboratory values. In contrast, linear interpolation was
speculated to be more effective for the more complete and
continuous vital signs, offering smoother and more physiolog-
ically realistic estimates between observed values. In practice,
we used a combination of the previously discussed methods
called mixed imputation. This assigns forward-fill, backfill,
or linear interpolation for each feature individually based on

the highest absolute correlation with the sepsis label across
the dataset. An example generic depiction of this process is
displayed in Figure 8.

Comparison of Imputation Methods

Fig. 8: Mixed Imputation

We also considered machine learning-based imputation
methods, such as MiceForest, an approach that uses random
forests to perform multiple imputations by chaining equations
(MICE) [28]. However, this was ineffective due to the highly
sparse data and highly computationally expensive for our large
dataset. Additionally, we experimented with Kalman filtering,
a time-series imputation technique that estimates missing
values based on prior and observed states [29]. Although
the dataset exhibits temporal continuity, Kalman filtering was
ineffective due to the sparsity and irregular sampling intervals,
which limited its ability to reliably estimate missing values.

E. Delta Values

As prior mentioned in Section 3.E, we noted that spotting
changes in feature values may be as important as the values
themselves. This led us to explore the use of delta values,
effectively applying a backward sliding window over previous
time steps. We only looked to apply this to the seven ’continu-
ous’ features up until Temp on the missingness graph (Figure
7), as these have enough data points to show regular changes.
After exploring many window sizes and combinations for this
problem, we found that a single backward window of three
time steps (Equation 9) best supplemented our approach and
improved our model. This improvement was likely due to now
being able to catch the quick speed of health deterioration as
a patient becomes septic, as mentioned earlier regarding the
increased rate of fatality of 4-8% [2] with every hour delay.

D(WZS)

t = stat (Xt7w+17 e ,Xt) (9)

The official classification of sepsis is a two-point degrada-
tion in SOFA score [6], with deltas designed to find these
patterns of change that complex scores are unable to capture
at a single point in time. We explore many window summary
techniques such as Exponentially Weighted Moving averages
(EWM) [30], Kurtosis [31], and Second Order Derivatives.
However, through experimentation comparing the final model
accuracies, we simplified using Mean, Standard Deviation,
First Order Derivatives, and Slope [32].



V. MODEL METRICS

For clarity, we define the following standard terms. To help
visualise we have included Figure 9 by JC Chouinard [33].

True Positives (TP): Sepsis classified as sepsis.

False Positives (FP): Non-sepsis classified as sepsis.
False Negatives (FN): Sepsis classified as non-sepsis.
True Negatives (TN): Non-sepsis classified as non-sepsis.
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Fig. 9: Confusion Matrix
A. AUC

As mentioned in the literature review, many papers used
only AUC and the PhysioNet challenge utility score. AUC,
specifically, is a mathematical metric derived from the ROC
curve. This plots the true positive rate (TPR) against the false
positive rate (FPR) over every decision threshold, for which
the area under that curve is then calculated. TPR and FPR
equations are included below in Equation I0.

TP _FP
TP + FN’ - FP+ TN

In our case, we just wanted to increase the number of
correct sepsis predictions (SepsisLabel = I) while not biasing
and sacrificing non-sepsis cases (SepsisLabel = 0). Although
indicative of model performance, AUC acts to overcomplicate
this and could not explain easily to clinicians how confidently
our model predicts sepsis. We wanted to supplement this with
a more straightforward metric.

TPR = FPR (10)

B. Ignoring Precision

We will now look specifically at precision, whose equation
for SepsisLabel = 0 is shown in Equation 11.

TN
TN + FN

For our project, due to the significant sepsis class imbalance,
precision for the SepsisLabel = 0 case is always approximately
1. This is because even if a few septic patients are wrongly
classified as non-septic (FN), the sheer number of correctly
classified non-septic cases (TN) far outweighs this. For this
reason, the precision metric is not desired in any of our
calculations.

Precision =

Y

C. Fg Score

Unlike precision, recall (Equation 12) compares the correct-
ness of each case individually, not suffering due to the class
imbalance. We explored optimising our model’s probability
threshold for sepsis identification using Fg scoring [34]. This,
like the commonly used F1 scoring, balances the outputs
between the precision and recall output metrics, and its cal-
culation is also shown in Equation 13 below. Being able to
drive up the 3 value leans the prediction to prioritise recall
over precision.

P
= 12
Recall TP + FP (12)
1 2 x Precisi
Py + B¢ x Precision (13)

- B2 x Precision + Recall
D. Custom Recall Score

As Fjg score naturally still includes some precision con-
sideration, previously discussed to be non-informative, we
decided to build a custom scoring metric for purely recall-
related considerations instead. This simultaneously tries to
maximise the mean recall across both SepsisLabel values while
minimising the difference between them to balance equally.
This is highlighted in Equations 14-18.

ro = RecallsepsisLabel=0 (14)

r1 = Recall sepsisLabei=1 (15)
MeanRecall = Tot T (16)
RecallDiff = |rg — 14| 17
RecallScore = MeanRecall — RecallDiff (18)

VI. DATA MODELLING
A. Gradient Boosting Models

We considered a range of modelling approaches, ultimately
deciding that tree-based gradient boosting methods would be
most appropriate due to their strong performance on tabular
data, generally outperforming deep-learning-based methods.
The commonly used options, XGBoost and LightGBM, na-
tively handle missing values, which is critical in a medical
context where missing data is common. Furthermore, they pro-
vide interpretable outputs (such as SHAP scores), which makes
them particularly well-suited in a healthcare context, where
transparency and interpretability are essential. LightGBM of-
fers faster training speeds, making it well-suited for iterative
fine-tuning and rapid experimentation. It also has greater
potential predictive accuracy due to its leaf-wise tree growth,
though this comes with a risk of overfitting. In contrast, the
slower XGBoost offers greater robustness to overfitting, with
built-in regularisation strategies that help stabilize learning.
Given that both models are strong candidates for the task
of sepsis classification, we chose to experiment with both.
This allowed us to compare their respective strengths and
limitations in the context of our dataset, helping us arrive at
a more informed and optimal solution.



B. Class Imbalance

Both models are also able to easily handle class imbalance,
allowing for penalisation of misclassification of the minority
class (septic patients). This is done by scaling the positive
weight in training based on the ratio of positive to negative
cases, which is done row-wise and shown in Equation 19.
Here, the negative samples are the number of patient rows
where SepsisLabel = 0 and vice-versa.

1218366
22327

. Negative Rows
scale_pos_weight = — =
PositiveRows

~ 54.56
(19)

C. Training Methodology

Our model training followed the standard 80/20 split be-
tween training and testing data. Stratification by sepsis label
was used to ensure both sets preserved the original prevalence
of sepsis cases. Our XGBoost and LightGBM models were
trained using logistic loss due to their practical application in
binary classification problems. We optimised hyperparameters
with Optuna [35] to fine-tune our model, targeting our custom
recall-based scoring metric.

D. Failed Training Considerations

Throughout the final phase of our project, where we refined
our modelling approach, we passed through many iterations
using different techniques. Firstly was patient-wise upsam-
pling using SMOTE [36], which uses the nearest neighbours
for each minority sample (SepsisLabel = I) to generate similar
but modified synthetic samples. This, although functional,
showed no model improvement, likely due to increases in input
complexity and potential overfitting to non-relevant trends in
the minority samples. Similarly, patient-wise downsampling
also showed significant issues, with the model becoming ex-
tremely biased towards SepsisLabel = 1 and losing predictive
power for the majority case. Finally, both Ensemble Meth-
ods [37] and K-fold Cross-Validation [38], although taught
during many University of Bristol units and often recom-
mended Data Science practice, ended up overcomplicating
the simple but effective tree-based gradient boosting methods,
leading to reduced performance and increased complexity.

E. ICULOS Inclusion

As a widely disputed topic we observed in the Sepsis
Challenge research, our last conversation before training our
models was whether the ICULOS feature should be included.
This feature denotes the time since a patient has been escalated
and placed in intensive care. Since a patient’s continued stay
in ICU implies they are still extremely unwell, we were con-
cerned whether or not this time-based feature may introduce
a model bias towards all longer stay cases or be a data leak.
However, given our main application is providing information
to help decisions made by real clinicians, who by definition
know the duration of a patient’s ICU stay, we could instead act
to harness the predictive power of ICULOS. In the Findings
we highlight this improvement’s significance.

F. LightGBM Model

As will be seen in later comparisons, LightGBM had minor
improvements in metrics across the board compared to XG-
Boost. Therefore, for completeness, a diagram of this model,
taking into account its hyperparameters post Optuna post-
processing, is shown in Figure 10 below. The maximum depth
parameter was selected to ensure that complex relationships
could be observed without overcomplicating. The low learning
rate helped the model converge while not overfitting and
adapting to non-existent trends. We combine the output from
a sequence of decision tree estimators, resembling the core of
gradient boosting [39].

N =350
L, =0.03
Depthyax =8

fx) = Z¥(x)

Fig. 10: Optimised LightGBM Model

This model alone allows for robust predictions but performs
even better when integrated into a structured and rigorous
pipeline, as described in the following section.

VII. FINDINGS

A. Optimised Final Pipeline

The data passed through a distinct sequence of stages in
our final pipeline to most effectively train. This began with
the raw data dictionary indexed by the patient and ended
with the final trained model. Key stages included delta feature
engineering, class balancing, and hyperparameter tuning. This
pipeline was perfected by rigorous examination of the output
metrics, guiding targeted adjustments. The whole pipeline is
depicted below in Figure 11.
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B. Checkpoint Model Metrics

As we progressed through model development, iteratively
examining model metrics as previously mentioned in Section
7.A, key checkpoints were stored to benchmark our progress,
shown below in Figure 12.

Model Recall Score (2.d.p) AUC (2.d.p)
(N}S?(?EJT:)S) 0.74 0.83
(};{SSEE)S;) 0.77 0.85
( ;Lg?é%ihSS) 0.75 0.83
I{Iiglll;fgg: 0.78 0.87
uc&%ﬁ%ms) 0.82 0.90

Fig. 12: Metric Checkpoints

C. Final AUC and Recall Score

As depicted in Figure 12, the final AUC of our system is
0.90, which indicates the model has a strong ability to classify
sepsis and non-sepsis cases and carries high mathematical
significance. An AUC of 0.50 would imply the model is
no better than random guessing. This analysis method also
benefits from the visual ROC curve plotted below in Figure
13.
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Fig. 13: ROC Curve

Alongside this standard metric, our custom Recall Store
reached a maximum of 0.82, equating to a confidence score
of 82% when classifying sepsis cases, which we could quote
to clinicians and medical professionals. Individual FP, TP, FN
and TN values for our 20% test split that lead to the confidence
above are best displayed in a Confusion Matrix [40] depicted
in Figure 14 below.
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Fig. 14: Confusion Matrix

D. Feature Importance

For our final LightGBM model, many known ways ex-
ist to display which features were most contributive to the
probability distribution output. Namely, the two most com-
mon include the built-in feature importance and the SHapley
Additive exPlanations (SHAP) values [41]. In particular, the
Beeswarm SHAP depiction carries the greatest interpretability.
The vertical axis displays the feature importance ranking,
whereas the horizontal shows whether each normalised SHAP
value decreased or increased the predicted sepsis probability.
This is constructed by adding a single point for each feature
across every patient in the test data split and shown below in
Figure 15.
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Fig. 15: LightGBM SHAP Scores

It can be seen that, logically, ICULOS is the most impactful
feature, with more extended stays implying that the patient is
septic. Temp, FiO4, and Creatinine level are the next most
impactful predictors, also noted as clinically sensible indica-
tors of sepsis, indicating that the model effectively identifies
essential relationships in the data. A hallmark sign of sepsis is
rising body temperature [42], highlighted by its high positive
SHAP value, manifesting with symptoms akin to a fever as the
body tries to fight systemic infection. Sepsis can significantly
reduce Respiratory function, often even progressing to acute
respiratory distress syndrome (ARDS) [43], shown by the
predictive nature of high F'iO9, which suggests the patient
needs oxygen supplementation. Finally, elevated creatinine
levels, shown on Figure 15 by positive SHAP values, signal
acute kidney injury (AKI) [44], one of the main deteriorations
spotted by SOFA. These also combine to show the significant
destructive nature of sepsis, targeting organ function across
the body’s core systems.

E. Experimenting With Maximising Sepsis Recall

During model development, we aimed to maintain a bal-
anced recall between septic and non-septic cases to avoid bias
or prioritise either. Despite this, we also experimented with
maximising recall for SepsisLabel = I cases to 1.0, reflecting
ethical considerations in a real-world clinical setting where
missing a sepsis case could have hugely serious consequences.
However, this could come at the cost of significantly increasing
false positives, leading to a lot of unnecessary resource alloca-
tion, which would not be feasible for most medical institutions,
particularly the UK’s NHS [45].

VIII. VISUALISATION

A. Overview

The primary goal of this project was to develop a dashboard
that provides real-time insights into sepsis risk for clinicians
while highlighting the key features contributing to each pre-
diction. Harnessing the predictive power of our model and
integrating it into a Streamlit [46] application yielded excellent
results.
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Fig. 16: Live Sepsis Risk Dashboard

B. Dashboard Content

Sepsis Risk Over Time: Displays a time series of the model’s
sepsis risk predictions based on live patient data, enabling
healthcare professionals to quickly assess a patient’s condition
and detect early warning signs they might not have otherwise.
SHAP Summary Plot: Enhances interpretability by illustrat-
ing the most influential features contributing to the historical
and maximum sepsis probabilities. This allows healthcare
professionals to cross-reference the model’s insights with
their expertise, facilitating more informed decision-making
and tackling the problem of a black-box system being hard
to trust.



IX. TRANSFORMERS

The structure of the patient’s hourly data lends itself to
a transformer model [47]. However, unlike textural data and
other sequential structures, with which the transformer per-
forms well, this dataset has a high level of missingness, some-
thing transformers perform poorly with, and so imputation was
required to produce a more friendly dataset at the price of
precision. A hybrid method was also attempted (Section 9.B),
where leaf values were encoded as inputs to a transformer. This
would handle the missing values and provide dense representa-
tion for the model. Data imbalances were another challenge of
this method. Passing in the raw data led to the model playing
it safe by overly predicting “not sepsis”. This was addressed
through weighted loss, ensuring that more attention was paid
to the “’sepsis” cases. Training this model was computationally
costly; time limited the level of hyperparameter tuning that
could be done, as new iterations took hours. To combat this,
the GPU was leveraged for model training and batch sizes were
subsequently increased. Early stopping conditions were put in
place, halting training if validation loss did not improve for 5
consecutive epochs, reducing possible overtraining; however,
the condition was reached only 38 epochs into training, likely
due to the imputation reducing noise and therefore degrading
feature quality, leading to a less robust and underfitted model.

A. Stand Alone Transformer

The stand alone transformer performed okay with non-
sepsis cases, achieving a recall of 0.750. However, even after
implementing weighted loss to discourage the model from
‘playing it safe’, the recall for sepsis cases remained low at
0.667, probably due to the extensive imputation required to
combat the lack of an inbuilt missing data system, smoothing
out differences between “non-sepsis” and “sepsis” features and
thereby the models ability to detect more subtle indicators of
sepsis.

Input Dimensions = 32

Dimensionality = 64

N_Head =4
Layers =2
Encoder
Learning Rate = 0.001
Batch Size = 256
N_Epochs = 38
Add & Norm <«
—l \ Sepsis Prediction
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Fig. 17: Transformer Model

B. Hybrid Transformer

Alongside the stand alone model, we attempted a hybrid
between the LightGBM and a transformer model. As men-
tioned previously, transformers do not handle missing data
by default. Pretraining a LightGBM model on the data, and
then encoding the leaf nodes and passing these nodes, with
the corresponding label, to the transformer could increase the
metric performance. We thought the transformer might be able
to take the key features extracted by the LightGBM model and
find hidden trends. Unfortunately, the model did not perform
well. This may be because the model overfit to the training
data, due to the model being pre-trained on specific LightGBM
leaf encodings.

X. DISCUSSION & CONCLUSION

As we have shown, this project clearly allows us to de-
tect early the onset of sepsis, using methods and providing
outputs that reflect real-world ICU conditions. During data
preparation, we calculated clinical scores such as SOFA,
closely aligning to the tried and tested processes doctors are
taught to follow. We were able to effectively select a suitable
model to handle the occurrence of missing data, allowing
for disparities and mistakes in real doctors using our system,
while reading live patient values. Using LightGBM, our model
achieved an AUC of 0.90 and a recall of 0.82, showing strong
potential for accurate sepsis prediction crucial in the front-
line of hospitals. This high accuracy also acts to minimise
the false positive rate, taking the load off a stretched health
care system and reducing unnecessary treatments. Ultimately,
this project delivers a valuable dashboard that aligns with
end-users, offering clinicians a reliable, transparent and easily
usable system for early sepsis prediction. With a joint focus
on predictive accuracy and interpretability, clinicians can rely
on our trustworthy machine learning approach to make well
informed and crucial decisions for vital patient outcomes.

XI. FUTURE WORK

The Sepsis Six is a protocol designed to help treat and
improve sepsis survival rate. It includes delivery of broad-
spectrum antibiotics one hour before sepsis recognition and
often even before infection pathogen confirmation [48]. Al-
though this approach is known to save lives, it can lead to
the use of antibiotics in cases that turn out to not actually
be bacterial infections. Broad-spectrum antibiotics are known
to accelerate the development of a specific anti-biotic resis-
tance, namely Antimicrobial Resistance (AMR) [49]. This is a
growing medical dilemma, where overusing specific antibiotics
causes a significant reduction in their effectiveness. There is
vast potential for our approach to be scaled up and used to
help avoid widespread unnecessary empirical treatment, only
urgently treating correctly diagnosed septic patients.
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