@ Sign.com Document ID: 7a3878173a - Page 1/30

% University of
WE] BRISTOL

Feathered Fugitives

Oh Deer

Team Manager - Sonny Cooper
Technical Lead - Dylan Quinton

Lead Designer - Alexander Horsman
Team Members - Charlie Nasiadka, Jack Wayt, Xin Yan Lim

Settings
Quit

Contents

1

2

3

Signed Declaration
Top Five Contributions

Nine Aspects
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Team Process
Technical Understanding
Flagship Technology Delivered

Implementation & Software

Tools, Development & Testing
Game Playability
Look & Feel
Uniqueness & Innovation

Report & Documentation

Abstract
4.1
4.2
4.3
4.4
4.5

Overview

Gameplay Loop

Al Enemies

The Team Process and Project Planning
5.1 Weekly Meetings
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Brainstorming Sessions

Conflict Resolution

Agile Sprintso
Planning L.
Integration

Project Management

Skill Allocation
Reflection

Individual Contributions
6.1
6.2
6.3
6.4
6.5
6.6

Sonny Cooper
Dylan Quinton
Alexander Horsman

T OO O O O Gt Ut Ot Ot Ot R s R

© © © 0 0w W -1 -3 -1 =

7 Software, Tools, and Development 17
7.1 Development Software & Tools 17
7.1.1 Unity 17
7.1.2 Blender 17
713 GIMP 17
714 GitHub 17

7.2 Development Process & Software Mainte-
NANCE .« « o v v e e e e e e e e e 17
73 Testing 17
7.3.1 User Testing 17
7.3.2 User Feedback 18
8 Technical Content 18
81 Al 18
8.1.1 AI Overview 18
812 Orders. 19
8.1.3 Detectorclass 19
8.1.4 Al Manager and Group Behaviours 20
8.1.5 Behaviour Trees 21
8.1.6 Balancing 21
8.1.7 Visualisation 22
8.1.8 Visual Audio 22
8.2 Open Al Dialogue 23
8.2.1 System Overview 23
8.2.2 API Interaction 23
8.2.3 API Key Security 23
8.2.4 Performance Optimisation 23
8.2.5 Future considerations 23
8.3 Choke Point Detection 24
8.4 General Game Architecture 24
8.4.1 Assemblies 24
8.4.2 Game Manager and INotify 25
843 Player 25
8.4.4 Gameplay UI 25
845 Al 25
8.5 Performance, Profiling and Optimisation . 25
8.5.1 Performance 25
8.5.2 Profiling 26
8.5.3 CPU Optimisation 26
8.5.4 GPU Optimisation 26
8.6 User Experience 26
8.6.1 Tutorial area 26
8.6.2 Scoring System 27
8.6.3 Multiple lives 27
8.6.4 Objective Panel 27
8.6.5 Objectives UL Popup 27
8.7 Animations, Graphics and Sound 27
8.7.1 Models and Assets 27
8.7.2 Lighting, Reflections and Shadows 28
8.7.3 Post Processing 28
8.8 Music and Sound Effects 28

1 Signed Declaration

We declare that the work in this report was carried out in accordance with the requirements of the University’s
Regulations and Code of Practice for Taught Programmes and that except where indicated by specific reference in

the text, this work is our own work.

Alexander Horeman

Alexander Horsman: Date:

Charlie Nasiadka: M” Date:
Dylan Quinton: /é/f\ Date:
Jack Wayt: ﬁa«_}/ Date:

Sonny Cooper: S'Q E ~ Date:
Xin Yan Lim: @ Date:

04/27/2025

04/27/2025

04/27/2025

04/27/2025

04/27/2025

04/27/2025

2 Top Five Contributions

1. We developed three distinct AI agents driven by behaviour trees, coordinating via a global state and choke
point detection for advanced behaviours. They interact with the world by influencing music, visuals and using
a complex detection system alongside OpenAl for creative chicken-related puns.

2. We made use of the graphics engine and computational resources to produce exceptional graphics at a reasonable
performance.

3. Continuously playtested with new players and iteratively adapted development based on feedback, with a strong
focus on user experience. This led to impactful improvements, most notably, the creation of a custom tutorial
that clearly introduced core gameplay concepts and dynamically adjusted instructions based on input method
(controller vs. keyboard). This allowed us to produce a game that’s polished to a near-publishable level.

4. We used professional development techniques and patterns to manage our codebase and produce high quality
modular code contained within appropriate assemblies.

5. We used an agile development cycle along side GitHub to organise our work, completing 30 team meetings,
over 800 commits, 86 pull requests and over 150 closed issues in 12 weeks.

Video link: https://youtu.be/x8is0vM1Ce0

3 Nine Aspects

3.1

3.2

Team Process

Two weekly in-person meetings, one at the start of
the week to define that weeks tasks and one near the
end to discuss issues and follow up on that weeks
progress. (See section 5.1)

Utilised Agile sprints to structure our development,
ensuring continuous progress and improvement

Organised brainstorming sessions when faced with
issues and used Milanote to map our ideas out.

Pair programming was used on larger coding tasks.

Kanban board used to visualise the workflow, allow-
ing team members to monitor progress. (See section

5.7)

Regularly updated Gantt chart, providing a clear
roadmap to stay on track with deliverables and to
help identify task dependencies. (See section 5.7)

Documented the primary weekly meetings along
with project supervisors inputs into weekly min-
utes, allowing team members to refer back to for
advice/key details.

Tterative development driven by feedback to reduce
risk of wasted development time and guide further
development.

Technical Understanding

Read book on Unity fundamentals [1] to help un-
derstand movement, animation, graphics and basic
AT (see section 6).

Read the Unity Documentation at
https://docs.unity.com/.

Read the Blender Documentation
at https://docs.blender.org/.

Researched algorithms and decided on the Hungar-
ian algorithm for optimal assignments of agents to
offsets [2]. (See section 8.1.4)

Researched the OpenAlI API to be able to integrate
it with the AT agents for realistic text. (See section
8.2)

Researched optimisation to add general optimisa-
tions to the game to improve performance.

Researched profiling to understand where the bot-
tlenecks in performance are.

Researched lighting and graphics to ensure that the
game was beautiful.

3.3

3.4

Flagship Technology Delivered

Implemented 3 distinct types of agents which are
controlled by Behaviour Trees and share a global
state contained in a Manager to allow for advanced
coordination. (See section 8)

Allow for each agent to update the global state to
allow for inter-agent communication.

Implemented advanced detection scripts that allow
for the player to be detected using sight, sound and
proximity.

Visualised the AI’s "thoughts” using a combination
of sound effects, visual elements and music.

Agents are integrated with the OpenAl API to allow
for them to generate realistic comments in context
of what is happening. (See section 8.2)

Implementation & Software

Utilised the Observer design pattern to ensure mod-
ularity and remove dependencies from the package.

Utilised events to further modularise and remove
dependencies.

Created a choke point detection function that uses
voxels and clustering to determine the location of
choke points. (See section 8.3)

Created an editor script to pre-process the choke
point detection, removing the need for it to be cal-
culated during gameplay, improving game perfor-
mance.

Utilised the Hungarian algorithm to assist in the
coordination of the agents during the surround be-
haviour. (See section 8.1.4)

Employed Behaviour Trees to control the individ-
ual agents, in which the AT Manager can give them
”Orders” to override their behaviours. (See section
8.1.5)

Implemented a layered soundtrack that plays more
layers in the music as the AI gets closer to the
player.

Implemented a day and night cycle used to create
tension and visualise the agent’s vision cones.

Implemented the ability for agents to ”speak” using
the OpenATI API. (See section 8.2)

Made use of industry-standard tools including
Blender, GitHub, Unity, and GIMP to support de-
velopment and collaboration.

3.5

3.6

3.7

Tools, Development & Testing

Used an agile git-flow development style [3] with
weekly meetings and a total of 5 sprints. (See sec-
tion 5.4)

Pull requests we reviewed and tested by others be-
fore merging.

Frequent user testing, utilising methods such as
think out loud testing and questionnaires which
used the industry standard PXI questions. (see
User Testing, section 7.3.1)

Creation of tools such as a component finder to as-
sist in bug fixing.

Game Playability

Movement is generally seen as smooth and simple.
(see User Feedback, section 7.3.2)

Key system allows for people of all skill levels to
play and enjoy the game.

Key system and randomness in Al allow for re-
playability as every run is different.

Controller and Keyboard and mouse input devices
are supported, allowing people to use the device
they are comfortable with.

The enemy agents are distinctive colours which will
assist colour blind players in identifying threats.

Re-spawn mechanic is forgiving and allows play-
ers to make mistakes while continuing to advance
through the game. (See section 8.6.3)

Look & Feel

Custom chicken, Farmer and Dog assets along with
their respective animations allow for a distinctive
look to the game. (See section 8.7.1)

Use of post processing such as the tone mapper,
bloom and vignette improve the visual qualities of
the game.

Baking the lighting and reflections improve the vi-
sual aspects of the game. (See section 8.7.2)

The day and night cycle allow for the game to show
off different styles of lighting and emphasise differ-
ent elements of the scene.

The use of the physics engine for movement leads
the player movement and interaction with the envi-
ronment to feel natural.

Implemented a visual audio system displaying on-
screen cues to indicate the direction of nearby Al
enemies.

3.8

3.9

Uniqueness & Innovation

Emphasis on the visualisation of the agents
"thoughts” to show the player what the ATl is up
to.

Use of OpenAlI API allows for the agents to make
in context comments about their situation.

Use of choke point detection allows for highly com-
plex behaviours in the Al (See section 8.3)

The use of several types of AI agent allow for
complimentary interactions that bring unique chal-
lenges to the player. (See section 4.3)

The custom assets, animations, lighting and post
processing lead to unique visuals. (See section
8.7.1)

Created a team wiki, documenting key systems
along with UML Diagrams, enabling members un-
familiar with certain sections to quickly understand
and contribute effectively.

Report & Documentation

Created a comprehensive report explaining the
technical aspects of the game, including coherent
diagrams to clarify system details and visually rep-
resent gameplay elements.

Created diagrams to model the agent behaviours.

Created a Wiki consisting of brief descriptions and
UML diagrams for the key technical areas [4] to al-
low developers to easily change between sections in
the game.

Utilised markdown files in the repository to keep
track of weekly minutes, test day takeaways, and
bugs.

4 Abstract

4.1 Overview

Feathered Fugitive is a third-person 3D game played on
PC with either a keyboard and mouse or controller. In
this game, you are a chicken on a farm plotting your es-
cape. You will need to gather a number of keys through
a series of challenges and exploration, unlock the electri-
cal box to turn off the power to the gate and make your
grand escape, all the while farmers and their dogs try to
stop you.

4.2 Gameplay Loop

The game begins in a chicken coop tutorial area where you
will find an escape plan pinned to the back wall briefly
detailing the dangers, the plan and the map. This is ac-
companied by a skippable tutorial which teaches you the
base controls for the game (Figure 1). This tutorial will
change instructions in real time depending on whether
you use keyboard and mouse or controller. Once the tu-
torial is completed or skipped the coop doors open and
you can begin the game.

Figure 1: Tutorial

Once through the doors the timer starts, and the game
begins. You will find yourself on the farm, surrounded
by dangerous Als who want to foil your escape plan and
glowing keys that take you one step closer to freedom.
For this game you will be given 10 minutes to escape, in
the beginning it is sunny with more relaxed music and a
more colourful scenery, however, the sun will set halfway
through the game, with the darker pallet signalling to
you, the player, that time is running out (see figure 2).
Creating a sense of urgency. Intensity is further increased
through a change in background music after you turn off
the power.

Figure 2: Day/Night

4.3 Al Enemies

Within the game 3 types of enemies will be looking for
you and will try to catch you from the moment you leave
the coop until your grand escape. All of these enemies are
different with different strengths and weaknesses. They
will work together, communicating and utilising their
strengths in order to catch you.

The first type of Al is the tractor. It has a very large
vision cone with its sight lines up to 150 meters long, but
balanced with a narrow field of view. It’s horn means it
can alert many others of your whereabouts across long
distances. However, this tractor is restricted to the wide
square-shaped farm road, because of this it is relatively
easy to escape if spotted.

The farmers on the contrary have much shorter sight
lines but a much larger field of view allowing them to ef-
fectively spot the player at short to medium ranges. They
have a much smaller alert area, meaning less enemies will
join in the pursuit if spotted. Unlike tractors, the Farmer
is not constrained by paths and will chase you through-
out the map. Every farmer carries a shotgun capable to
knocking the player out of any unreachable areas.

The final type is the dog. It has a short-range vision
and a very wide field of view. It is the fastest entity in
the game, meaning that players will have to find higher
ground to escape it. It also has proximity detection, as
it can smell the chicken, making the dogs extremely pow-
erful in close-range encounters. This is balanced by pre-
venting them from communicating accurate locations of
the player to the other Als and their inability to follow
the player to higher ground.

We have made an attempt to showcase the thinking
and communication of the Als in a way that feels natural
to the player. We have utilised sound effects to show-
case events such as being spotted, and we have a layered
soundtrack that adds layers to the music as the agents get
closer to the chicken. Along with this, visuals have also
been added to the game to further showcase the com-
munication, with alerted Als being made more obvious
with pop-ups above their heads and visual audio shown
around the player to further display the direction in which
the enemies are coming from. Finally, the map changes
to night as time begins to run out. The uses of torches
and headlights further showcase the views of these Als in
the second half of the game, again enforcing the concept
of AI thinking.

4.4 Key System

To ensure the game is fun and playable for both casual
gamers and die-hard PC fans, we have implemented a key
system. Throughout the map there are many keys, some
are gold keys; showcasing the harder more challenging
tasks such as parkour in the windmill, some are bronze
keys; showcasing the easier basic tasks such as climbing
into the boat, and finally in the middle there are silver
keys, which provide a bit of a challenge such as climbing
onto the window of a house. To unlock the electrical box
you will need 1000 points, a bronze key is 100 points, a
silver 250 and a gold 500. This system means the more

casual players are not forced to do tasks they find ex-
tremely difficult whilst the more competitive players can
go above and beyond, getting more than enough keys to
escape in order to improve their overall score.

4.5 Score

The score functions similar to the old Super Mario Bros
game [5] concept where a clock will count down from 10
minutes and the time you have left once completing the
game will be added to the overall score. This lends itself
to different play styles as some players may go for overall
speed to get a good score whilst others may attempt to
collect as many keys as possible within the 10 minutes to
achieve their score. It was important to us that different
strategies could be utilised in our game to ensure it didn’t
become a one play game, and so we adopted and tuned
this score system over of our original timer system.

5 The Team Process and Project
Planning

Coming into this project only one member was proficient
in Unity. To combat the potential learning curve, the
project manager read a book on Unity fundamentals [1],
with this we organised ourselves to ensure learning had a
minimal impact on the progress of our game.

To start, our technical manager, who is proficient, set
up the base structure of our game and worked on the
more complex issues. The others split into two groups, a
group of 3 which began on the more simple and beginner
issues to get an idea of the language, and a group of 2
where the project manager utilised pair programming to
teach the other member more complex concepts. After
the first two weeks the technical manager then reviewed
the codebase, refactored, and gave points to improve on.
This ensured an overall fast start to the project. Occa-
sionally throughout the project and during the meetings
the technical manager would point out where the code
could be improved to help the others develop their skills.

5.1 Weekly Meetings

Throughout the project we had weekly meetings on both
Mondays and Thursdays. This ensured the team stayed
together as one and people didn’t go away and complete
things others did not know about. It also ensured people
always had an issue to work on.

The meetings were set so Mondays would be the pri-
mary meeting where we would discuss ideas and new is-
sues to complete that week; if people wanted to change
pace from something they had been working on for a
while, this is when it occurred. As this was the more
important meeting all things that were discussed were
written down and sent to the repository so that they may
be referenced if there was any confusion (Figure 3). Along
with this a weekly contributions sheet was also added to
for each team member.

Team Meeting 4

Figure 3: Weekly meeting notes

Along with the primary meeting the Thursday meet-
ing was utilised as a way to review progress and resolve
issues. In this we would begin by creating a PowerPoint
on the changes that had occurred since last Thursday and
then discussed any difficulties or questions that may have
arose from this weeks goals. The rest of this meeting then
consisted of pair programming upon these challenging ar-
eas, this minimised the chance of people getting stuck on
an issue throughout the weekend.

5.2 Brainstorming Sessions

Throughout the project, whenever we encountered issues
or hit a wall, we organised brainstorming sessions to en-
courage creativeness and problem-solving. To visually
map out our ideas we used Milanote (Figure 4), which
helped us in shaping a cohesive design direction for the

game.
cEig &

Chictam

= m

'rfil J'l-! J'J

Figure 4: Example of one brainstorming session on Mi-
lanote

5.3 Conflict Resolution

From the start of the project, our team leader made a con-
scious effort to involve everyone in the decision-making
process. During meetings, he regularly asked for each
team member’s input and ensured that all voices were
heard before any decisions were made. This inclusive ap-
proach ensured that no one felt left out in the team, and

at the same time minimised the likelihood of conflicts es-
calating.

Overall, due to the frequent meet-ups there were min-
imal conflicts. Where there were conflicts, both sides
would typically voice their reasoning on the issue before
coming to a compromise. The primary example of this
comes from the egg shooting dispute... Half the team
wanted the eggs to shoot forwards so it would be eas-
ier to aim, the other half of the team thought it would
make no sense for eggs to come out of the front of the
chicken due to their anatomy. The compromise for this
came from having an aiming feature be combined with the
reverse camera, giving the ease of aiming the egg whilst
maintaining the basic logical anatomy of the chicken.

5.4 Agile Sprints

At the beginning we split the game into three iterations,
an MVP, a beta release and a final release. This was fur-
ther split into 5 total sprints, each leading up to an im-
portant date such as a panel meeting or a test day. The
frequent sprints ensured that frequent integration into the
dev branch occurred, ensuring a relatively up to date ver-
sion of the game was always present.

Using the initial requirements defined for each iter-
ation of the game from week 1, we further defined the
feature requirements for each sprint at the end of the last
sprint. This occurred via a group review on the Thurs-
day meeting, this was generally productive as each sprint
ended in a form of testing event, and so issues typically
arose that could be placed straight into the next sprint.

A key part of our sprint planning process was allow-
ing each team member to choose the tasks they were most
interested in. Each Monday, we would summarise what
needed to be done for the week and break it down into a
set of tasks. Team members then selected the ones they
felt most motivated to work on. This approach ensured
that tasks were picked up efficiently, while also keeping ev-
eryone engaged and invested in their contributions. As a
result, tasks were completed more effectively, and overall
team morale remained high throughout the development
process.

5.5 Planning

In the early planning phase, we held a series of meetings
to brainstorm gameplay mechanics and map the struc-
ture of the game. The initial idea was simple: a farm
setting where the player, playing as a chicken, must es-
cape while being chased by Al-controlled entities — a
farmer, a dog and a tractor. The objective was to collect
two keys through puzzles or parkour challenges in order
to unlock the electric box and escape.

Once the core concept was established, we identified
major components for the MVP, including basic move-
ment, Al behaviour, key mechanics, and win conditions
to ensure the game was fully playable and testable by the
panel, allowing us to gather early feedback on gameplay
and core interactions. These tasks were distributed across
the team and aligned to our sprint schedule.

Following our first round of playtesting, we found that
some players, especially those less familiar with games
struggled with the original setup of finding two fixed keys.
To make the experience more enjoyable for a wider au-
dience, we redesigned the key mechanic by introducing a
gold/silver/bronze key system where each key awarded a
different number of points. This allowed players to choose
how much to engage with the map and reduced the diffi-
culty barrier for progression.

Then, we started focusing on increasing replayability
and refining the scoring system. A timer was added, en-
couraging players to escape as quickly as possible to max-
imise their score. We also drew inspiration from classic
arcade-style games Super Mario by making the remaining
time contribute positively to the final score, while player
deaths would subtract from it. To support this, we im-
plemented a respawn system which when the player dies,
they instantly respawn with the timer still counting down
and their collected points unchanged. This made game-
play faster-paced and allowed for competitive, repeatable
runs where mistakes were penalised, but players could
continue to immerse in the game experience.

To avoid last-minute issues, we made a conscious deci-
sion during the final sprint to stop implementing any large
new features. Instead, we shifted our focus toward polish-
ing existing systems and refining gameplay based on user
testing feedback. This involved reprioritising tasks, post-
poning less critical ideas, and concentrating on improving
player experience through bug fixes, UI tweaks, and minor
gameplay adjustments. The final week was reserved for
testing, finalising ongoing work, and compiling the release
build. We also allocated time for creating the gameplay
video and presentation materials. To mitigate the risk
of last-minute bugs, we compiled a stable version of the
game a few days before Games Day. This ensured that
even if a late addition introduced critical issues, we had
a reliable build ready to present. This approach helped
us avoid common problems such as game-breaking bugs
or rushed content and ensured the game was stable, well-
tested, and ready for Games Day.

5.6 Integration

For integration, we defined early on a general work-
flow which consisted of taking an issue from the Kan-
ban board, creating a branch off of dev for which this
issue would be resolved and then creating a pull request
back into dev. Each PR was linked to its corresponding
issue on the Kanban board to maintain clear traceabil-
ity between tasks and code changes. Inside the PR, we
clearly described what had been done, which made it eas-
ier for reviewers to understand the purpose and scope of
the changes. Whenever relevant, we also included screen-
shots or recordings to help visualise visual/UI updates
or confirm that bugs had been resolved. This request
would be reviewed by another member, tested, and then
merged. This flow ensured frequent integration into the
dev branch as all personal branches would only consist of
one issue on the Kanban and so would be relatively small
and simple to integrate in.

Coming up to the end of sprints the rule was any fea-
ture you wanted in the compiled version must have a pull
request by Monday evening. Tuesday was then spent in-
tegrating all components in the morning before compiling
in the afternoon so it would be ready for the testing ac-
tivity that would occur on Wednesday. The code for this
fully integrated version would then be pushed to main to
ensure a complete version was always present.

5.7 Project Management

To ensure everyone had a general idea of the timeline
and when issues needed to be finished we utilised a Gantt
chart (Figure 5), this showcased both the expected com-
pletion dates for each iteration along with the dates for
each sprint cycle. This combined with the details within
the weekly notes ensured team members both understood
upcoming deadlines along with the requirements for those
deadlines.

O R R R R LA A RN ER)
= ;' .

Figure 5: Gantt Chart

For task allocation we used GitHub’s Kanban board
(Figure 6), we would discuss all issues for that week in
our Monday meeting then add those tasks to the board
along with the allocation of who was going to do what.
We refined our Kanban workflow over time by splitting
tasks into the columns: "To Do’, "To Do High Priority’,
'In Progress’, 'In Review’, and 'Done’. Within each issue
card on GitHub, we made full use of the available fea-
tures to clearly document the task. We tagged whether
it was a bug, a feature, or a general task (if it didn’t
fall cleanly into either category). For bugs, we provided
detailed steps on how to reproduce the issue, expected be-
haviour, and any relevant screenshots. For features, we
included a breakdown of the functionality and intended
behaviour. This level of detail helped reduce misunder-
standings and made it easier for other team members to
pick up and complete tasks effectively. This meant team
members could both understand what their weekly tasks
were in a simple and visual way, whilst also ensuring oth-
ers could better view the progress on tasks that may over-
lap with their own.

8 o« 8 o« # F

Figure 6: Github’s Kanban board

To allow team members to move between aspects of
the game with minimal resistance we utilised a form of
Wiki to create documentation [4] (Figure 7). With this
each key aspect of the game was broken down into archi-
tecture diagrams and descriptions. The main justification
for this stemmed from the concern that members could
remain fixed on one section of the project due to a lack
of understanding of the other aspects, possibly leading to
a loss of motivation and burnout.

Game Manager

Figure 7: Technical Documentation

5.8 Skill Allocation

Due to the nature of games involving skills other than
coding, and the weakness of our team being the fact that
none of us took the CGI unit, skill allocation was an im-
portant issue. For this we decided that one person should
become familiar with blender, one familiar with GIMP
and one familiar with Unity animations. This along with
the technical lead already being proficient in all three, led
to a smoother overall process when it came to graphics.

5.9 Reflection

Over the course of 12 weeks, we gradually improved our
workflow and learned from our mistakes. Most of these
improvements came from the test days, panel meetings,
and their subsequent reviews post sprint. Presenting our
game, we learned to bring chargers and compile early.
From sprint retrospectives, we learned to define goals
more rigidly and communicate in more detail task alloca-
tion so members are less confused about what they need
to complete that sprint.

One mistake we made throughout the early days was
not prioritising key tasks, areas such as asset creation
and animation were given more attention than the Al
We resolved this management problem through organis-
ing our issues into a priority list in the Monday meeting,
this ensured that key components of the game had team

members allocated, meaning if progress slowed one week
the less important issues would be the ones impacted.

Another challenge we encountered was dealing with
conflicting feedback from a diverse range of playtesters.
A key example was the minimap. Some players wanted a
minimap that showed the layout and real-time positions
of AI to help them plan their movements. However, oth-
ers felt that this would reduce tension and immersion, as
players might end up focusing on the minimap instead of
the actual game world. Another point of contention was
whether the game should pause when the map was open.
While some players found it frustrating to manage the
map under pressure, others enjoyed the added challenge
of needing to find a safe spot to open it, which aligned
more with the survival aspect of the game.

These varied opinions made it difficult to satisfy all
players. In the end, we had to make trade-offs and pri-
oritise what aligned best with the tone and gameplay ex-
perience we wanted to deliver.

Overall, our key strength were these frequent meetings
and their positions within the week relative to test days
and panel meetings. They meant we could quickly re-
solve conflicting advice, leading to fewer disputes between
teammates as people did not have the time to gain strong
opinions about certain advice before the entire team dis-
cussed it. Alongside this new high-priority tasks high-
lighted within the panels could begin work faster.

Through this experience, we learned the value of con-
sistent communication, clear documentation, and proac-
tive collaboration, which helped us maintain momentum
and deliver a polished final product.

10

6 Individual Contributions

6.1 Sonny Cooper

Prep Work - 2 Weeks

Read a book on Unity and learned the basics so that the
start of the project could run smoothly and I could pair
program to help bring others up to speed.

Initial Planning - 1 Week

As a team we spent the first week discussing the ideas
for our game, deciding how we were going to manage the
workload and when we would meet.

Third Person Camera - 3 Days

Created an initial script to move the main camera around
the player depending on their direction of movement and
mouse use. This was not powerful enough so transitioned
to a Cinemachine camera for the third person view, al-
tering the script so the player’s forward movement will
be the direction the camera is pointing.

Interactables - 2 Weeks

Created a script to allow the player to interact with some
obstacles in certain ways, an example being mud which
slowed the player’s speed. Hay was created, so when you
pressed 'E’ you would be hidden inside the hay.

Interactables Text Prompt - 3 Days

Created a script which converts world coordinates to 2D
coordinates, allowing text prompts to be displayed above
game objects via the HUD.

Clucking - 1 Day

Created a script to allow the player to cluck, initially this
came with a charge-up time of 10 seconds, which was
displayed within the HUD and communicated everything
through the GameManager.

Coop Asset - 3 Days
Worked alongside Jack in Blender to create the first iter-
ation of the coop asset.

Reverse Camera - 1 Week

Implemented a reverse camera that looked directly be-
hind the player when a button was held and went back
to front facing once let go. This required setting up a
camera swapping script to be used as a consistent place
for all view alterations.

Initial Bug Fixes - 3 Days
Separate flap and jump functionality, allow flap to charge
in the hay, improve camera issue within the hay.

Windmill - 2 Days
Wrote a script to raise a platform when an egg was
shot into the bucket. Wrote an initial script to change
the camera view inside the windmill, made controls feel
weird so scrapped it.

11

Admin - 3 Weeks

Wrote all weekly minutes, set up all test day consent
forms, player participation sheets and questionnaires for
both test days. Was in charge of test day observations,
observing bugs, players interactions, and personal opin-
ions; I was also responsible for filtering all this informa-
tion into a markdown document to be discussed on the
Thursday meeting. Finally, I wrote most of the Wiki
to allow team members to better transition between the
complex areas of the project, this consisted of brief de-
scriptions accompanied by UML diagrams [4].

Tutorial Area Sprites - 1 Week

Worked within GIMP to create the maps and other sprites
within the coop to showcase the general ideas of the game.
This took a while as we wanted a ‘chicken has drawn this’
vibe and so this consisted of drawing everything with a
trackpad to make it intentionally scruffy.

Egg Shooting - 5 Days

Created a crosshair which activated when the player
aimed, and charged as the fire button was held. The au-
dio increased with the power level and triggered a cluck
when fired.

Report Template - 2 Weeks

Wrote the first 5,000 words of the report, building the
template of what sections should go where, sorting the
bibliography, page formats and links before filling in all
possible sections.

Timer - 1 Day
Helped Charlie with the initial timer, adding it to the
HUD and creating a script to update each second.

Cut Scenes - 2 Day

Created a death cutscene that was later removed, and a
gate cutscene which was triggered when the power was
turned off, this scene traversed the map in the direction
of the gate before showing to the player the gate opening.

Play-testing And Bug Fixing - 3 Weeks

Spent time playtesting and resolving issues found.
Checked every collider on the map and changed all viable
mesh colliders to box colliders, fixed colliders, added mud
to the map, stopped player from being able to jump over
the gate and other sections, added gravity to square hay,
updated sprites and created a rope for the pulley system.
Stopped the lead camera from going through walls.

Video - 3 Days
Jack created the video and told me what clips he wanted
and where in the game he wanted them. I captured and
sent them to him.

Games Day - 1 Days

Helped plan the layout for the day, tried dealing with
the controller issues alongside the Rook Sacrifice team.
Helped set up all lab machines with the game and did
the majority of post game day disassembly.

6.2 Dylan Quinton

Project setup and Core Functionality - 1 Week

Created the Unity Project and uploaded it to GitHub for
collaboration and version control. Created frameworks
for core functionality including: Main menu which had a
play and quit button; Game Manager, a singleton which
managed the game state, stores globally accessible infor-
mation as well as an event system (see Game Manager
and INotify); Basic Player movement which allowed for
walking, sprinting and jumping; Gameplay UI for paus-
ing (via the Game Manager), restarting the level, and
returning to the main menu; Input handler which man-
ages the input for keyboard and mouse and gamepad.

Enemy AI - 4 Weeks

Created/Modified the behaviour trees for the AI types
(Farmer, Dog and Tractor). Wrote the Detector script,
which handles their ability to detect the player through
sight, sound and proximity. The AI Manager communi-
cates with the Detectors through the IDetector Interface,
allowing them to coordinate and communicate.

Choke Point Detection - 1 Week

Created an editor script which is capable of detecting
choke points in the map. It runs in the editor and then
saves the variables into the AI Manager so that the lo-
cations can be accessed during gameplay without having
to execute the detection script again, improving perfor-
mance.

AI Manager - 2 Weeks

Created the AT Manager singleton which coordinates the
AT Agents and stores a global state. It includes conditions
to start group behaviours such as Surround, Choke, and
Swarm. It also handles the Ghost Chicken visualisation
allowing players to see their last known location.

Models, Animations and Particles - 1 Week
Created the models and animations for the chickens and
farmers in Blender. The chicken has idle, walk, run, flap
and concussed animations. The Farmer has run, walk,
idle, tired, shoot, dive and call animations. Created par-
ticle effects for the chicken’s death and shooting.

Sound Detection - 1 Week

Added the ability for the Detectors to ”hear” nearby
sounds such as the chicken clucking and objects falling,
prompting them to investigate those locations. The sound
notifications can also propagate through the Als as they
can alert each other to sounds they have heard. The
communication is done through the AI Manager.

Detectables - 2 Days

Added detectable objects using the Detectable class.
These objects when spotted by the Al will invoke differ-
ent behaviours in the Al such as investigation and calling
for backup based on the priority value of the detectable
object. (Removed as it was under utilised and added
unnecessary complexity.)

12

Lighting and Reflections - 3 Days

Improved and baked the lighting as well as reflection
probes. Added post-processing to the scenes to im-
prove visual quality, including an ACES Tone-mapper,
Vignette, and Bloom.

Prefabs - 1 Day

Created the key prefab, added a spotlight and animated
them. Created a walking sheep and cow and chicken
prefabs. Created a bullet tracer prefab. Created a Ghost
Chicken that can have the current pose of the player ap-
plied to it by the Al Manager.

Gameplay Ul - 2 Days

Added UI buttons to restart the level and return to the
main menu and Ul panels for: Game Win which shows
your score and time and the buttons; Game Lost which
shows the buttons and a title; Pause which shows the
buttons and an additional unpause button. The UI Pan-
els are displayed to the user using notifications from the
Game Manager.

Main Menu - 1 Day

Created the main menu including placing assets, UlI,
lighting, reflections, music, and wrote a script to have a
wandering chicken in the scene.

Sixth Sense - 1 Days

Added sixth sense into the game so that the player knows
when they have been spotted, this is in the form of a UI
element that displays an ! above the player and SFX
which plays an alert sound.

AT Visualisation - 2 Days To help visualise the Al’s
intelligence I added a canvas above each enemy that
displays an ! if it can see the player and a 7 if it is
investigating an area. I also added sound effects to the
farmer and dog to indicate that specific behaviours are
occurring, as well as a wave animation for the Farmer to
indicate they are calling for backup.

Concussions - 1 Day

Added the ability for enemies to concuss the chicken,
which disables movement, plays a particle effect and an
animation.

Code and Tech Management - 5 Days

Technical Lead, therefore responsible for managing the
codebase and implementation of features. Re-wrote and
modularised code on occasion to reduce dependencies be-
tween classes. Added assembly definitions to manage and
reduce compilation time, as well as to somewhat enforce
modularity. Handled the compilation of several versions
of the game.

Optimisation and Profiling - 2 Days Did deep pro-
filing to identify any major bottlenecks and basic optimi-
sation to improve the performance of the game.

6.3 Alexander Horsman

Initial Planning - 1 Week

As a team we specified what it was that we wanted to
create, assigned roles and created a schedule. I collab-
orated with Charlie to brainstorm our initial gameplay
design and aesthetic. Researched previous game designs
and spent time learning Unity.

Key & Gate System — 1 Week

Created the initial gameplay loop of grabbing two keys,
turning off electric and opening the gate. The key count
and logic I later converted to be handled by the Game
Manager. Added key sound effect, a Ul key counter and
an animation for the gate opening to make gameplay
reactive to player actions.

Gameplay Design & Scope — 2 Days
Worked with Charlie to develop a gameplay loop focused
on showcasing our key tech and map. Defined the initial
scope of our game design and created a list of features
such as landmarks, puzzles and Al types.

Unity Terraining — 3 Days

Imported an initial asset package and researched how to
make realistic terrain. Added terrain, textures and flora
to create a forest path. This forest did not fit the final
game design but was useful for learning terrain tools and
fixing render bugs.

Tractor AI — 1 Week

Made a tractor behaviour tree from the farmer behaviour
tree and detector created by Dylan. Made the tractor
only catch the player when they are detected and col-
liding with the tractor mesh. Added the tractor asset,
engine noise, and horn noise when spotted. Restricted
the tractor to roads by creating a new nav mesh and
agent type. This initial tractor AI was later changed
with the Al manager.

Objectives Panel — 2.5 Weeks

Based on testathon feedback, I changed the compass de-
sign to an objectives panel. The panel appears when a
user presses ‘m’ or up on the d-pad and includes a live
map, objectives and icons. Implemented an orthographic
camera to create a live 2D map, I used layers to specify
what each camera should render. Streamlined the code
for the key system and added updating objectives and
key count to the objectives panel. Used GIMP to modify
and import map icons for the gate, electric box, and keys
which appear or disappear when necessary. Also created
a tractor icon based on the tractor asset. As this feature
was more ingrained with our environment than originally
planned, it caused too many merge errors. I therefore
made it a second time with a newer build of our game.

Fixed Unity Library — 1 Day

Fixed issue with Unity that would change the ID of some
prefabs and incorrectly import blender files, leading to
invisible models and compiler errors. Fixing this allowed

work to be done on the lab machines.

Day-Night Cycle — 2 Weeks

Created a day-night cycle to showcase the Al vision and
allow the player to get a natural intuition for the timer.
This included the creation of a time controller which
allowed us to select a start hour, sunrise / sunset hour
and a time multiplier. Initially, this changed the angle
and intensity of the sun and moon directional lights and
the environment’s ambient colour. I then made sun and
moon sprites and created a bloom material to fit our
environment. Sourced and added skyboxes and a skybox
blend shader, which is adjusted in the time controller
script. The environment fog and skybox fog were also
added to change dynamically with time. Added a script
to disable the map camera rendering fog and also changed
the sea shader to dynamically change its colour tint as it
could not process environment fog.

Adding & Blending Lighting — 1 Week

Added lighting to our map via street lamps and a script
that turns lights on at a specified time. Added tractor
headlights and farmer torches to match their respective
vision cones. Spent considerable time playtesting and ad-
justing the post processing, environment and day-night
cycle variables until the lighting blended and fit our
game’s aesthetic. This included the addition of varying
the ambient light intensity with time. Adjusted shadows
and light effects to improve performance without affect-
ing the overall design.

Respawning — 2 Weeks

Implemented a respawn mechanic based on user feedback
which allowed players to experience our full gameplay
loop. This required resetting any features that adjusted
the player state such as hay, mud and flapping. Fixed
respawn bugs caused by the Al grabbing multiple times,
last spotted or concussing the chicken. Added a death
count in the game manager which I could then use to vi-
sualise in the Ul. To keep within our game design I added
an insta-death mode which triggered when the timer ran
out or when the player turned off the electric box. Added
a new death sound and reworked the respawn transition
to get an ’arcade-like’ design.

Game Won Panel & UI Changes — 5 Days
Reworked the design of the Game Won Panel. Modi-
fied the final score to remove points for each death and
changed the score animation to reflect this. Added new
animations for time left and final death count. Went
through and polished the look of other panels and mod-
ified the timer UI. Fixed issues with the map in the
objectives panel and remade the key icons.

Games day — 1 Day

Helped plan and set up the room layout for games day.
Created a detective-style pinboard as decoration. Adver-
tised our game with Xin by pinning posters at University
hotspots.

13

6.4 Charlie Nasiadka

Initial Team Planning — 1 Week

Worked with the team to define the core gameplay con-
cept, set up meeting schedules and organised the initial
development plan. Created a project to-do list with
Dylan and collaborated with Alex on gameplay objec-
tives and early asset planning. Learned to use Git for
team-based development, Unity, and Kanban for task
management.

Flight Mechanic & Asset Planning — 1 Week
Created the chicken’s flight mechanic. This mechanic
was supported by a Stamina UI, for which I developed
both the visual UI and the logic. I also began compiling
a detailed asset list with the help of Xin.

Map Concept — 2 Days

Sketched a rough map layout, defining key areas and
their purpose in gameplay. Painted terrain onto the map
to establish the initial environment.

Design Board — 1 Day

Created a Milanote board with reference materials and
sketched side/profile chicken drawings for Dylan to use
in blender.

Environment building & Object Physics — 2.5
Weeks
Designed and built the game map, focusing on:

e Selecting assets to match the intended visual style
and atmosphere.

Implementing various physics interactions, includ-
ing custom player and object physics.

Developing a custom beach ball physics script.

Developing majority of the map such as detailed
Crops, Forest, Lake, Market and surroundings.

Added optimisations by labelling appropriate ob-
jects as occluder and occludee to improve rendering
performance and adding custom box colliders where
necessary.

Gantt Chart — 1 Day

Created a Gantt chart to ensure the team had a clear
development timeline and knew when issues needed to be
finished.

Playtesting — 3 Days

Played the game to ensure that map design, such as asset
placement and sizing was optimal, fixing small bugs and
adjusting layouts during testing.

Barn Task & Swimming Mechanic — 1 Week

Designed and implemented the Barn Parkour puzzle. Ex-
tended the map with the new pond area, helping expand
gameplay variety and navigation. Added a custom but-
ton script which detects if player or box is on it to open
a door. Implemented a Swimming Mechanic for the lake,

14

expanding player movement options.

Testathon Feedback & Player Guidance — 0.5
‘Weeks

Helped document feedback from testathon and worked
on necessary improvements such as implementing an on-
screen objective popup Ul to improve player guidance
and fixing small issues.

New Key System & Score Display — 1 Week
Added Silver and Bronze keys with unique visuals, inte-
grated Gold key particles, and distributed keys through-
out the map. Built Time and Score Ul and added it to
GameWon panel with animated feedback.

External Coordinator — 2 Days

Throughout the project I coordinated with composers
and panel members, ensuring we met certain deadlines
and regularly communicated with the team by sharing
updates, supporting the team manager. Created a pre-
sentation detailing audio requirements, deadlines, and
reference tracks for composers.

Visual Awareness — 1 Week

Developed a visual audio system UI in response to feed-
back, which dynamically reacts based on the chicken’s
camera position. Calculated enemy directions using vec-
tor normalisation and converting from polar to Cartesian
coordinates.

Games Day Logistics — 2 Days

Organised the Games Day equipment, props and printed
materials. Contributed to poster and sticker designs. De-
signed T-shirts to boost team identity.

Final Video — 1 Day
Provided voiced narration for the project video, clearly
communicating the game’s features.

OpenAl Feature Development — 2.5 Weeks
Researched and implemented a new Al dialogue feature
which used the OpenAlI API. Integrated the system with
Game Manager and Al Manager for unique responses
based on context of live in-game events and player ac-
tions. Iteratively refined it and optimised the API calls to
minimise token usage while maintaining response quality.
This feature made farmer interactions feel more lifelike
and coordinated.

Resolving Conflicts & Play Testing — 2 Days
Merged changes with the Dev branch, resolving game-
breaking conflicts and conducted hours of rigorous testing
to ensure a stable Games Day build.

Games Day Delivery — 1 Day
Worked alongside the Tech and IT departments to meet
technical requirements for Games Day. Organised the
station setup, delegated last-minute tasks, arranged the
station layout and actively engaged with panel members
and players throughout the event.

6.5 Jack Wayt

Initial Planning and Preparation - 1 Week

In the first week, our group met to brainstorm and refine
our ideas, narrowing them to two clear game concepts
to pitch. We assigned roles and set a regular meeting
schedule to stay organised and manage the workload. We
also discussed the technical skills needed for development.
To contribute more effectively, I researched and watched
tutorials on Unity and Blender, focusing on improving
my skills in Blender.

Camera System — 2 Weeks

Using Cinemachine, I created a third-person camera sys-
tem where player movement aligns with the camera’s
facing direction. Later, I enhanced the system to im-
prove gameplay. For tasks requiring upward visibility,
I scripted the camera to offset the player downward on
the screen when looking up, maintaining visibility. I
also added a rear-facing camera to allow players to look
behind, essential for specific challenges. Finally, I im-
plemented camera collision detection, preventing it from
clipping through walls and ensuring the player remains
visible, even in enclosed spaces.

Interactables - 2 Weeks

I created a script enabling interaction with specific ob-
jects. Players could hide from Al by interacting and
hiding within hay bales, while walking through mud trig-
gered a decreased movement effect.

Interactable Prompts - 1 Week

I developed a script that displays a prompt (image or
text) above interactable objects when the player is within
a certain range, showing what the object does and which
button to press to interact with it. It uses world-to-screen
coordinate conversion to keep the prompt correctly po-
sitioned above the object. Later, I added linecasting
and collision detection so prompts only appear when the
player is facing the object and it’s not obstructed by
something like a wall.

Input Device Detector - 3 Days

I developed a script to track the last input device used,
primarily for use with the interactables and tutorial.
This allowed players to switch controls mid-game, with
all prompts updating to match the current device. The
system also distinguishes between controller types (e.g.
Xbox, PlayStation) to ensure accurate input bindings are
displayed.

Coop Area — 3 Days / 2 Weeks

I initially worked with Sonny on the first iteration of the
coop, focusing on the basic layout and concept. Later in
the project, with improved Blender skills, I revisited the
coop to add more detail inside and out. Since the tutorial
took place inside, I focused heavily on that area, creating
additional assets like chicken beds, straw, shelves and
adding extra chickens to the area.

15

Windmill Task — 1 Week

I modified a pre-existing windmill asset by hollowing out
the interior and designing a spiral parkour path with
platforms, ladders, and added details. I also designed
and created the bucket asset for the pulley system. Ad-
ditionally, I helped Sonny create the detection script that
activates the pulley when an egg lands in the bucket.

Tutorial - 1.5 Weeks

I created a script that runs a mandatory tutorial at the
start of the game, guiding players through all core con-
trols before allowing gameplay to begin. Each instruction
appears on-screen with the relevant keybind, dynamically
updated based on the player’s input device using the de-
vice detection script. Once completed, the coop door
lowers to signal the start of the game.

Archery Task & Shooting Eggs — 1 Week

I designed the archery area and scripted a detection sys-
tem that unlocks a chest revealing a key when an egg hits
the target. I expanded on the existing egg shooting by
adding a “look back” mechanic and a chargeable shot, in-
dicated by a charging crosshair and clucking sound. This
also introduced vertical aiming. After testing different
control setups, we settled on holding left-click to look
back and right-click to charge the shot.

Electric Area - 5 Days I created the electric area
asset in Blender, then added details like warning posters
and electrical particle effects along the fence. I created
a script that detects if the player tries to jump over
the fence, triggering an electrocution effect that plays
an electrocuted sound as well as shaking and launching
them back. I also implemented the ability to interact
with the door once you’ve gained enough points, trig-
gering a HUD loading bar. Then finally interacting with
the lever flips it, plays the cutscene, and unlocks the gate.

Play Testing and Bug Fixing - 3 Weeks
Throughout the project, I handled bug fixes, but in the
final three weeks, I focused entirely on playtesting and
refining the game. 1 identified and resolved numerous
issues, with a major focus on HUD bugs, such as text
appearing in incorrect locations across different panels
and features breaking after certain combinations of map
or pause menu use. I also tackled gameplay bugs, fine-
tuning elements like object sizes, look, player speed, and
overall game feel for a smoother experience.

Video - 3 Days

I developed a structured timeline for the trailer, focusing
on building interest while effectively showcasing the game.
I wrote the script for the technical segment, highlight-
ing key technologies and the effort behind development.
For the footage, I directed Sonny with specific scenes
to capture, which involved implementing custom camera
angles, movement scripts, and varied character perspec-
tives. I then edited and compiled the clips, adding sound
effects, music, and voice-over to produce an engaging and
informative final video.

6.6 Xin Yan Lim

Initial Planning — 1 week

During the first week, our team focused on discussing
initial game ideas, exploring mechanics we wanted to
implement, and deciding on a general direction for the
project. We also established a plan for dividing tasks,
using version control, and set up recurring team meetings
to ensure regular collaboration throughout development.

Asset Research and Selection — 3 days

Searched and compiled a list of potential assets (low poly
farm, textures) aligned with the game’s visual style. Col-
laborated with the team to shortlist final assets based on
aesthetic consistency and Unity compatibility.

Character Sketches — 1 day

Created early concept sketches of the chicken and farmer
based on our visual references and game concept. These
were added to the team moodboard to help establish a
consistent visual tone.

Tutorial Restrictions — 1 day

Implemented checks to prevent the chicken from shooting
eggs or using the reverse camera before these features are
introduced in the tutorial. These functionalities are now
unlocked only after the corresponding tutorial segments
are triggered, ensuring structured and guided progression.

Egg Shooting Mechanic — 1 week

Developed the chicken’s egg shooting feature using
Unity’s Input System, supporting both gamepad and key-
board/mouse input. Instantiated and launched projec-
tiles with physics-based force, triggered explosion effects
on collision with specific tags, and managed cooldowns
for shooting.

Dog AI and Behaviour System — 1 week
Implemented the dog’s Al using Unity’s Behaviour Tree
tools and NavMeshAgent. The dog patrols between way-
points and chases the player upon detection. If the player
escapes, it resumes patrolling. I initially implemented
event-based alerts to trigger the farmer Al when the dog
detects the player; this was later replaced with a cen-
tralised Al Manager for better scalability.

Research Task: Learning Blender and Unity Be-
havior Trees — 1 week

Spent time learning how to use Blender for 3D modeling
and animation by following online tutorials covering the
basics of mesh editing, rigging, keyframe animation, and
rendering. I also spent time learning how to use Unity’s
new behaviour graphs and trees.

Dog Model and Animation — 2 weeks

Designed, modeled, rigged, and animated the dog char-
acter in Blender. Final assets included idle, walk, and
run animations prepared for Unity integration.

Playtesting — 1 week

16

Playtested the game regularly throughout development
to identify bugs. Fixed a movement bug by reducing
air control to stop acceleration upon jumping. Fixed a
bug where interactable prompts appeared in the sky by
switching them to the correct world-space coordinates.
Also added friction materials to certain objects to pre-
vent chicken from sliding.

Timer System Fix — 2 days

Fixed incorrect time counting logic in the game. Updated
the system to start only after the player exits the coop
and to pause when the game is paused.

Main Menu Input Handling — 1 day

Resolved a Ul bug where the first menu button was al-
ways selected by default, which was needed for gamepad
support but visually unappealing for keyboard/mouse
users. Adjusted button selection accordingly using the
input device detector.

AT Swarm and Aggression Triggers — 2 weeks
Made the AI swarm the player when the timer runs out
to increase challenge, and implemented a more aggressive
Al state after the cut scene stops.

Chase Audio Layers — 1 day

Added six dynamic chase audio layers based on AI dis-
tance to the player. The closer the enemy, the more
intense the audio, providing players with escalating audi-
tory tension.

Input Handler Initialisation Bug — 2 days
Resolved a persistent error caused by ‘In-
putHandler.Player.Disable() when restarting or exiting
the game. The issue stemmed from redundant initiali-
sation in both ‘Start()¢ and ‘Awake()* methods. Traced
through multiple scripts that referenced the shared input
handler to locate and fix the bug.

Background Music Implementation — 1 day
Added a background music track for the tutorial and
a separate track that plays after the post-electric-box
cutscene. Fine-tuned volume levels to prevent the music
from overpowering other in-game sounds.

Promotional Materials — 1.5 week

Created the Games Day promotional poster using Canva.
Rendered in-game assets in Blender, adjusting lighting
and camera angles for clean visuals to get a png image file
of them. After team feedback, I simplified the design and
repositioned key text elements to make venue and timing
more readable. Also designed the game logo, which was
featured on T-shirts and stickers distributed during the
event.

Games Day — 1 day

Helped plan and set up our team’s station and room
layout for Games Day. I recreated the graphics outlining
the dangers, a map, the objectives, and controls to help
visitors understand the game. Worked with Alex to pin
posters at University hotspots.

7 Software, Tools, and Develop-
ment

7.1 Development Software & Tools
7.1.1 Unity

Unity was our chosen game engine. It is a well established
game engine with a significant amount of well written doc-
umentation as well as learning materials which allowed
for the inexperienced members of the team to easily find
solutions to their problems. The Unity Asset store was
particularly useful for finding models and textures for the
game, and packages such as the Behaviours package and
Al-Navigation allowed us to focus our efforts on creating
novel systems rather then re-inventing the wheel. Godot
was considered but due to its relative infancy there aren’t
as many learning materials available online, which could
potentially hinder learning. Unreal engine was also con-
sidered but deemed too computationally demanding and
unnecessarily complex for our needs, alongside the steep
learning curve.

7.1.2 Blender

Blender was used to create all our custom 3D models,
such as the farmers, the dogs, the chicken, the chicken
coop and the electrical box. It was also used to alter as-
sets we acquired in the Unity store, such as updating the
windmill to have parkour inside. It was chosen as it is a
free open-source computer graphics tool set that allows
us to easily create and edit models.

7.1.3 GIMP

GIMP was primarily used for the sprites found within the
coop tutorial area. We created maps to help more con-
fused players with the objectives and dangers within the
game. For this we wanted to give the maps a “chicken has
drawn this” vibe, and so the workflow primarily consisted
of tracing over game images with the pen tool. GIMP was
chosen for similar reasons to Blender.

7.1.4 GitHub

To keep track of ongoing issues and the tasks everyone
was working on, we used GitHub’s built-in project tools.
From the start, we created a Kanban board with four key
status columns, which gave us a clear overview of all tasks
and who was handling what. Assigning issues and us-
ing labels helped ensure everyone knew which part of the
game they were responsible for, reducing the risk of mul-
tiple people accidentally working on the same task. Later
in the project, during one of our larger sprints, we added
a new ”Urgent” column. This made it easy to highlight
high-priority bugs and features that needed immediate
attention. We also made use of milestones, setting three
main ones for the MVP, Beta, and Final release. At the
beginning of each milestone, we outlined what needed to
be completed, which helped us gauge how much work was

required each week and whether a sprint was necessary to
stay on track for release deadlines.

7.2 Development Process & Software
Maintenance

We developed the game using the agile approach. We
had a master and dev branch. The master branch would
hold the latest working version of the game, and the dev
branch would contain all the new features from the latest
sprint. Team members would tackle issues by assigning
themselves to the issue and creating a new branch where
they would complete the issue. Once completed, they
would create a pull request which would be reviewed and
tested by at least one other team member. If there were
any issues a comment would be left the team member who
created the pull request would fix it.

To ensure software was maintained and bugs were
dealt with whilst development of new features continued,
after each Testathon the bugs found would be noted and
two team members would spend the next week squash-
ing them whilst the rest of the team worked on the new
features. As we entered the final 3 weeks of the project,
bug squashing became more of a priority, and so the two
team members were delegated purely to playtesting and
bug squashing. This consisted of changing many mesh
colliders to box colliders to improve performance, improv-
ing graphics such as adding a rope to the windmill pulley
system, fixed issues such as seeing prompts through walls,
and tweaking mechanics such as map sizing, swim speed
and the time left overall weighting on the final score.

7.3 Testing
7.3.1 User Testing

All testing days consisted of think out loud testing where
a group member noted the issues found, this was followed
by a questionnaire which used the industry standard PXI
questions. After this, the findings were written up and
relevant issues were placed on the Kanban board to make
the changes. Panels and discussions with musicians were
also used as a more informal form of testing to further
enhance the game.

e First test day - 5" February (week before the first
panel) - 14 people tested

— Al can’t see the chicken when on higher ground
(can’t look up or down)

— Prompts need to be a lighter colour as hard to
see in darker areas

— Camera goes through walls and is hard to look
up with

— Map needs more direction in showing the
player what to do

e First panel - 12" February - 7 people tested

— Needs more direction in the base concept; is it
a stealth game or an action game.

17

— Needs to showcase the AI more so the user un-
derstands that the enemy is in fact ’smart’.

— Needs a tutorial to help with the game under-
standing so we do not need to explain it.

e Musician meeting - 28" February - 2 people tested

— Utilise music to showcase the Al getting closer

— Shift midway through from day to night, re-
flect in music to give more a sense of time pres-
sure

e Second test day - 5" March - 37 people tested

— Better showcase progression
— Outline objectives clearer
— Further showcase the Al thinking

e Seccond panel - 12¢* March - 7 people tested

— Look into Pac Man Al [6]
— Further showcase Al thinking

7.3.2 User Feedback

The overall census was that people enjoyed playing the
game and liked it more as it developed. This was reflected
in the forms where throughout all stages of testing, “I had
a good time playing the game” consistently scored above
4.5/5 with some written feedback even stating “I loved it,
I could play all day”.

The enthusiasm was also shown by the fact that the
number of people to formally test our game doubled be-
tween the first Testathon and the second, with many peo-
ple not being able to play due to the queue. This was
further reinforced by game day, where we had 18 lab ma-
chines running for over 3 hours and still had people wait-
ing to play.

The standout feedback was that the controls felt nice
to use; however, some found them slightly glidey. The
map looked good and “like a real game” and, most impor-
tantly, the game was fun. People generally enjoyed run-
ning from AI, the goofiness of clucking and laying eggs,
and the high-stakes final dash for the end. One player
also really enjoyed hiding in the hay, spending half an
hour jumping in and out before being told to give others
a turn.

The biggest piece of feedback we received from the tes-
tathons was about the game’s objective. During the first
testathon, it became clear that while players enjoyed run-
ning around the map and avoiding getting caught, they
were doing so without a clear sense of purpose and were
unsure to what they were ultimately meant to be achiev-
ing. To help this, we implemented a tutorial to guide
players on how to play and to direct their attention to
clearly outlined objectives on the coop’s walls.

By the second testathon, we noticed a significant im-
provement in players’ understanding of the game and its
core objectives. Some were even able to complete the
entire game without any assistance from our team. How-
ever, a new issue was uncovered, while players were col-
lecting keys and earning points as intended, they weren’t

18

aware of when they had collected enough to turn off the
power and escape. As a result, we had to interrupt their
gameplay to inform them.

To address this, we added an on-screen prompt to no-
tify players when they had enough points. This change
had a clear impact on the final game day, as none of our
team members needed to help players with any part of
the game.

Our final area of user feedback came from the panel
days. For the first panel day, the idea of game direction
was further enforced, leading to our focus on user expe-
rience and accessibility for all levels of players. This was
proven to us as we spent the majority of this panel ex-
plaining how to play the game, something that should be
self-explanatory in complete games. This led us to cre-
ate the tutorial area and the map to better showcase the
goals of the game. The second and more focused feed-
back came from the key technology, where the point was
raised that for AI to perform well as a key technology it
not only has to think well, but also be shown to the player
that it is thinking well. From this feedback, we created
farmer emotes, different AI noises and visual queues to
show when you are spotted.

The second panel day was positioned towards the end
of the overall project, so the majority of feedback was
given with the intention of polishing, leading to a smaller
impact on the overall game. From this we found that
our Al needed to be even smarter and further showcased.
This led to choke points being added to the game along
with visual audio to display in what direction you are
being chased from. OpenAl was also used for this final
version to generate witty jokes using the real-time game
context, further showcasing the Als thinking.

8 Technical Content

8.1 Al
8.1.1 AI Overview

Having intelligent Al is very important for the success of
the game as it provides a challenge to the player through-
out gameplay. The AI will attempt to catch the player
as they make their escape from the farm. The Al is sev-
eral agents, each capable of making their own decisions
as well as communicating with the Al Manager. There
are 3 main types of agent: farmers, dogs and tractors;
each will be explained in more detail in their respective
sections. To make the AT uniquely threatening we wanted
to find ways of displaying its intelligence and thoughts to
the player providing a fear of being hunted by intelligent
beings.

From the beginning of development we were aware that
balancing the AI to prevent it from being too good or
bad is critical as if it leans too far either way the game
may become frustrating for the players. We sought reg-
ular feedback throughout development to help guide our
decisions allowing us to fine tune the difficulty to be ap-
propriate for all users.

The Al is split into 3 main components. The AT Manager,

the detectors and the behaviour trees (of which there are
3 types one; for each agent type listed above). There are
a few important supporting classes such as the Choke-
PointDetector and Order.

8.1.2 Orders

The agents needed a form of short term memory for many
of the behaviours that we wanted them to exhibit such as
investigate (Search a location for the chicken) and follow
(Go to a location the chicken is predicted to be in based
off of variables from when it was last seen). This func-
tionality was fulfilled by the Order class which inherits
from ScriptableObject. Orders are used to provide and
control what information each Agent has access to and at
what time. Each order has a type, priority, location and
many other variables which define what behaviour should
be executed and how, as well as if one behaviour should
be cancelled in favour of another. Agents receive orders
from both the Detector class and AT Manager based on
the conditions of the scene. For example on spotting the
chicken, information is passed from the detector which
saw the chicken to the AT Manager which then makes a
decision on what actions should be taken and by which
agent. The relevant orders are then instantiated and
passed to the agents’s, starting their behaviours. The
detector issues a follow order if the chicken is lost.

8.1.3 Detector class

The Detector class is used to allow the agents to detect
the player and other game objects in the scene. It can
use sight, proximity and sound to detect game objects in
the scene. We decided to give the agents multiple meth-
ods to detect the player as it helps the agents display a
higher level of sophistication and ability to interact with
the world. This is visualised with cones and spheres in
Figure 8.

The Detectors contain an order field which stores a script-
able object of type Order which can be accessed by the
Behaviour tree and written to by the AI Manager and
Detector class itself, allowing both the AI Manager and
the Detector to control the agents. This provides an ad-
vantage as the Al Manager does not have to control every
behaviour, only the group behaviours, and when one isn’t
occurring each agent makes decisions for itself. This also
adds to the realistic feel as the agents will all act au-
tonomously unless required otherwise.

The Detector class inherits from MonoBehaviour and im-
plements the IDetector interface which defines functions
that allow for orders to be set in the detector, as well
a notify function used in the observer pattern between
the Detectors and the AI Manger. The Detectors sub-
scribe to the AT Manager for event notifications so that
the AT Manager can more easily coordinate actions when
an event occurs, such as when the game ends, the Al Man-
ager will notify the detectors to disable the behaviour
trees and to stop scanning for the player. Using this
method prevents the detectors from being dependent on
the AT Manager, helping modularise the code.

19

@ Sign.com Document ID: 7a3878173a - Page 20/30

Figure 8: Figure shows a Farmers vision cones with the
overlap spheres in blue.

The Detection works as follows: Every 1/10th of a sec-
ond the sight detection and proximity detection functions
are run which add detected objects to a list, followed by a
function that checks that list for the chicken or other de-
tectable objects. This was chosen to run every 1/10th of
a second to improve performance as it hugely reduces the
number of times the code needs to be run, without notice-
ably affecting the agents ability to detect the player (See
more Profiling, Performance and Optimisation). Sound
detection is handled by events that are routed through
the AT Manager.

Sight Detection works as follows, for defined each vision
cone an overlap sphere is cast with its collision layers
set to player and detectable. For each object within the
sphere it checks if it is within the height limit, angle limit
and if it has line of sight to the object. If these tests all
pass then the object is visible to the detector. The object
is then added to the list of detected colliders. The de-
tector is capable of running multiple vision cones at once
to allow for more complex sight detection to occur. Each
vision cone’s settings are defined by a VisionCone Script-
ableObejct.

Proximity Detection works very similarly to sight detec-
tion, an overlap sphere is cast over selected layers and for
each object within the sphere it checks for line of sight. If
true then these objects are added to the list of detected
colliders.

Once the list of detected colliders is built, iterate over it
and check to see if the chicken is one of them. If it is
then the target field is set to the chicken. This field is
accessible by all other components in the agent.

Sound Detection is handled by the AI Manager by calling
the Sound function. Whenever a sound that the agents
are supposed to react to is played, the sound function of
the AT Manager is called with the location and alert ra-
dius. For each agent within this area it is alerted using an
Sound Primary order. Upon receiving a Sound primary
notification, the agent will propagate this and any other
agents near that one will receive a Default order telling
them to investigate the area as well.

Previously each detectable object has a Detectable com-
ponent. This defined what behaviour should be taken
once spotted. Each object had a priority to allow the
agent to focus on the objects that were most likely to lead
to the chicken or the chicken itself if spotted. Ultimately
this feature was removed as it added unnecessary com-
plexity causing bugs in the detection code. Paired with

the sparse utilisation of this feature and it was deemed too
costly to keep in the final version. It is likely given more
time that it would have returned with a more prominent
role in driving enemy behaviours.

8.1.4 AI Manager and Group Behaviours

The AI Manager is a singleton class (there can only be one
instance of it at a time). It is used to coordinate group
behaviours for the agents as well as a few solo behaviours.
Only farmers can participate in the group behaviours for
continuity and balancing reasons. The current group
behaviours are Swarm, Surround and Choke. The solo
behaviours it can control are Chase and Shoot. It can be
notified if the player has been spotted by the agents using
the Detector class. It stores a reference to the player so
that it does not need to have the player passed to it every
time the player is spotted. Upon being notified that the
player has been spotted it uses available information such
as the players location, velocity, the agent that spotted
the player, the distance between the player and all other
agents and nearby choke points (see more in the Choke
Point Detection section) to decide which behaviour it will
get the agent’s to execute. The behaviours are chosen
like this to easily allow for coordinated behaviours be-
tween the agents, helping them appear to communicate
and display intelligence to the player. The AI Manager
also handles the layered music, adding more layers as the
agents gets closer to the player in order to increase the
tension and serve as a warning system to the player.
The Group behaviours are an essential part of making
the AI feel intelligent. The first is the Swarm behaviour.
This is a simple behaviour that is called when the final
stand is started, it gives the agents a speed boost and
tells them the location of the player so that they can
close in quickly across large distances and apply pres-
sure. This behaviour occurs during events such as when
the player unlocks the gate to begin the final sequence of
the escape.

The Second is the Surround behaviour, as depicted in
Figure 9. This behaviour occurs if the player is not
facing a choke point that is within 30 meters of the char-
acter. This behaviour creates an offset for each agent
within 30 meters of the player. The agents will need to
add this offset to the players position and then move to
that new location. The offsets are then assigned to each
agent using the Hungarian Algorithm to reduce the over-
all distance the agent’s have to travel to get into position,
speeding up the set up time of this behaviour. Overtime
the magnitude of the offsets will shrink resulting in the
agents closing in and once within 3 meters of the player
they will all dive at the player. This behaviour has been
exceptionally effective at catching players as the only
way to reliably dodge is to fly and due to concussions
and limited stamina this isn’t always possible. Despite
the success in catching the player this behaviour is quite
messy once it finishes as all of the farmers will end up
very close to each other, which does provide the player
a chance to escape but it also can feel very chaotic and
break the illusion of intelligence.

20

@ Sign.com Document ID: 7a3878173a - Page 21/30

The Hungarian algorithm (also known as Kuhn—-Munkres
algorithm or Munkres assignment algorithm) was chosen
to pair the agents to the offsets because some agents
would get to their position much sooner than others. By
using it to pair them and minimise the total distance the
agents travel this will speed up how quickly the agents
are able to get into position. Whilst the Hungarian al-
gorithm has a poor time complexity of O(n?) [7] since it
is limited to 4 agents, this will have a negligible perfor-
mance impact.

Figure 9: Figure shows 4 Farmers surrounding the player.

The next behaviour is the Choke behaviour, as de-
picted below in Figure 10. This behaviour occurs if the
player is facing a choke point within 30 meters of their lo-
cation. This behaviour will send one agent to wait at the
choke point known as the blocker. The next agent will act
as the net and will hold an offset of the players location.
The offset for the net is calculated using the vector from
the choke point to the player and the forward vector in
the equation below:

20, J
il

7l

(1)

Where @ represents the vector “Chokepoint To Player”
and f represents the ”"Player Forward” vector. The norm
symbol || - || denotes the magnitude of a vector.

This created an effect where the ‘net’ agent guides the
player to the blocker’s location by attempting to steer
them towards it. If a third and/or fourth agent is avail-
able then it will sprint straight at the player to panic them
and cause them to make an error. This behaviour relies
heavily on the quality of the choke points that have been
found. It also struggles to deal with the players ability
to fly. Despite this it shows a very high level of complex
coordination and has resulted in a fair number of caught
chickens.

Player |

Figure 10: Figure shows Farmers performing a choke,
with one blocker, one net and one chaser.

The next behaviour is the chase behaviour. The Al
Manager will send the agent a chase order if there is only
one agent within 30 meters of the player when spotted or
for some of the group behaviours one agent will be desig-
nated as the chaser. The chase behaviour is very simple.
The agent that has this behaviour will sprint straight to-
wards the player. Farmers in this state will dive at the
player when within 2 meters. During the dive animation
an event is triggered and if the player is within 1 meter of
the farmer when this event occurs the game manager is
alerted and the chicken is considered caught. Otherwise
the Farmer will get up and enter the tired state. Dogs in
the chase state will run at the player. If they touch the
player then the player will be concussed, disabling input
for 3 seconds. Both the farmers and dogs get tired during
the chase state, after 5 seconds of chasing they give up
and stand still for a period to catch their breath. This
helps with balancing.

The final behaviour is the shoot behaviour (Figure
11) which only the farmers can participate in. This be-
haviour occurs when the player is not reachable. The
player is deemed unreachable if they are above 2 meters
or if they are not standing on top of a navmesh. If this
occurs the farmers will pull out a shotgun and shoot at
the chicken using raycasts. A bullet tracer, lights and
sound effects are used to make it seem like an actual
projectile has been fired. If the player is not moving then
they are perfectly accurate and will hit the chicken every
time. If the player is moving at more than 0.3 meters
per second then a small random rotation is applied to
the vector between the farmer and the player, giving it a
chance to miss. On a hit a concussion is applied to the
player, with a large force causing a lot of knock back,
hopefully moving the player to a position where they can
be caught and preventing players from camping.

Figure 11: Figure shows a Farmer about to shoot the
chicken.

The layered music is also controlled by the player.
Each layer is on a different audio source and they all play
at the start of the game. Layers volumes are adjusted
based on how close or far away this nearest enemy agent
is. This adds an auditory component to the ‘visualisation’

21

aspect of the AI and helps to add suspense and tension
to the game.

8.1.5 Behaviour Trees

Each agent is controlled by a behaviour tree. A behaviour
tree is a tree in which each node represents a decision or
action that the agent needs to make. Each agent type has
its own behaviour tree which controls its actions. The
behaviour trees also control the animations of the agents.
The Behaviour trees for the farmer and dog follow the
same structure: If you have no target or order, ask the
AT Manager for a point to wander to (The AI Manager
selects a random point within 50 meters of the player
so that they never wander too far away); If you have a
target and no order, notify the AT Manager and wait for
instructions and if you have an order follow its respective
branch. Orders can call other orders. The Behaviour
trees can access the Detector class to collect information.
The tractor does not seek out the player and thus all
its tree does is handle navigation between waypoints and
also notify the ATl Manager if the player has been spotted.
The behaviour trees were set up with the order system to
allow then to act autonomously or as a group which helps
improve the perception the intelligence as the farmers can
act individually or as group.

The Behaviour trees were constructed using Unity’s Be-
haviours package. This package contains a basic set of
nodes and flow control available to be edited in a graph
format. We added our own custom nodes, such as: wan-
der, dive, call investigation etc (Figure 12). These custom
behaviours allow our behaviour trees to exhibit custom
behaviours.

Figure 12: Figure shows the Farmer’s behaviour tree.

8.1.6 Balancing

Balancing the AI was essential for the enjoyment of the
game. If the AT is too difficult then it will become frus-
trating for players who are trying to complete the game.
If the Al is too easy then there is no threat to the players
attempting to complete the game, removing all tension
from the session. To help with this problem each AI was
given strengths and weaknesses which are designed to be
able to complement each other to make the Al a challenge
to deal with but not impossible to overcome.

The Dogs are extremely strong at close range. They are
faster than the player which means the only way to es-
cape this it to fly or find a barrier. The also have a very
wide field of vision and proximity detection so that they

can smell you if you get too close. To help balance this,
they have a very short range on their vision and cannot
look up, meaning the player only has to fly over them to
defeat them.

The Tractor is capable of detecting the player from ex-
tremely long distances and can alert the farmers over vast
distances. This was balanced by making them patrol a
set route at regular intervals allowing players to antic-
ipate their movements. They also have a very narrow
vision cone to reduce the power of their sight.

The Farmers are possibly the most difficult to defeat.
They are just as fast as the player, have a decent sized
vision cone, can call for backup, and have a shotgun to
prevent the player from flying out of reach. Pair this
with the coordination and multiple farmers can become
particularly difficult for the player to deal with. There
are a few ways that they were balanced. Firstly they get
tired when running so they can’t chase you indefinitely.
Secondly there is a short amount of time between them
diving and catching the player, giving the player a small
window to evade the attack. Finally the shotguns are
inaccurate if the player is moving, meaning there is a rea-
sonably high chance that they will miss the player and
this chance goes up as the distance increases.

8.1.7 Visualisation

An important aspect of the Al was to use visualisations to
convey the feeling of intelligence to the player. We used
several different methods to showcase the Al and agents
thoughts to the player.

We put alert text above each individual agent. This text
will display an ! if the agent has spotted the player and
a 7 if it is searching for the player. It is also integrated
with OpenAl allowing the farmers to make in context
comments about what is happening. As described in the
section 8.2.

We introduced the day-night cycle to also help Al vi-
sualisation. During the night, the farmers and tractors
turn on their lights. This allows the player to easily vi-
sualise their vision cones, helping showcase the detection
systems in the game.

The day night cycle uses a time controller script which
allows us to specify a start hour and sunrise / sunset hour.
Each update() call the script completes adds a second
multiplied by a time multiplier, configured to have sunset
3.5 minutes into the gameplay.

Every update() call also updates the angle of our sun
and moon directional lights. We first calculate the per-
centage of day completed by using our sunrise and sunset
hours. We then interpolate this percentage to between 0
and 180 to get our angle for the sun’s directional light,
similarly between 180 and 360 during the night. Our
moon’s directional light is the same angle plus 180 de-
grees.

The most important aspect of the cycle was having a
smooth transition from day to night. To achieve this, we
take the dot product of the forward vector of the sun’s
directional light and the down vector. The dot product
result is between 1, if the light is pointing down, or -1, if

22

pointing up. To have a transition focused during sunset
and not linear between midday and midnight, we map the
result to a light change curve (Figure 13).

Figure 13: Figure showing the light change curve.

The steep incline in the curve creates a focused tran-
sition at sunset. We then interpolate the mapping from
the curve to any variables that change between day and
night. These include directional light settings, ambient
light settings, fog settings, skybox blending and colour
tinting.

The introduction of environmental fog meant our sea
shader would not blend during night. To solve this we
interpolated its colour tint between its daytime colour to
the night time fog colour (Figure 14). We also created a
script that tells unity our map camera should not render
fog, as otherwise the objective map becomes unreadable.

Sunset
12pm PR —— - 12am

Figure 14: Figure showing the transition of the sea colour
tint with time.

Additionally, the time controller sends the game man-
ager a signal for when to turn on the lights. Farmer
torches, tractor headlights and street lamps all have a
script that listens to the game manager and turn on at
the specified time.

Sound effects were also used to help showcase intelli-
gence. The farmers will make different noises depending
on what they’re thinking. For example after hearing a
suspicious noise they make a ”"huh” sound, and if you
are close to a dog and it can smell you it will begin to
growl. These audio cues add another sensory element to
the AT’s intelligence. These sound effects are attached to
behaviours and conditions in the behaviour trees, and are
activated when they are met.

8.1.8 Visual Audio

One of the areas for improvement after the second panel
was to show the player the direction from which they were
spotted by the AI. Visual audio was the solution to this,
as it provides visual indicators of nearby enemy Als when
the chicken is spotted. Not only did this help the player
but it also highlighted the AI’s decision-making.

When the chicken is spotted, a transparent Ul ring
pops up and icons show up around the ring representing
the direction and type (farmer, dog or tractor) of nearby
enemies relative to the player (Figure 15) and camera
forward vector c. The enemy direction d is calculated
by subtracting the player’s position pplayer from the en-
emy’s position Penemy, followed by normalisation to get a

unit vector. The angle between the player’s camera di-
rection and enemy is then calculated. This angle is then
converted into a 2D direction using polar to cartesian con-
version (sine and cosine of the angle). For ease of inter-
pretability, if there are multiple enemies coming from the
same direction, the position of the icons is moved apart
slightly. The enemy direction vector d, angle 6 and 2D
UI position u are computed as shown in Equations 2—4:

Penemy — Pplayer

d= 2

(

(
(4)

Lastly, each icon is positioned using its direction at a
fixed distance from the centre of the ring sprite.

|penemy - pplayer‘
6 = signed_angle(c, d, §)

u = (sinf, cosb)

Figure 15: Figure shows the visual audio around the
player.

8.2 Open Al Dialogue
8.2.1 System Overview

To enhance the interactivity of the Al, we integrated Ope-
nAl’'s ChatGPT-40 mini model to generate dialogue for
the farmers (Figure 16). This system allows each farmer
AT agent to respond to the player’s actions and game
events, making their decisions feel more spontaneous and
lifelike. Their humorous dialogue is on theme with our
game’s style and our LLM-driven system offers a fairly
novel solution to NPC scripting by replacing the tradi-
tional list of dialogues written manually with unique and
contextual responses.

23

@ Sign.com Document ID: 7a3878173a - Page 24/30

Figure 16: Figure shows a farmer Al responding to an-
other farmer via OpenAl integration.

8.2.2 API Interaction

The OpenAl Manager is responsible for the entire in-
teraction with OpenAI’s API, overseeing the process of
requesting and processing responses. When dialogue is
needed, the script gathers specific context on the game’s
current situation from the Game Manager and Al Man-
ager, such as whether the chicken has been spotted, if a
player has collected a key and calculates additional de-
tails such as how long has the farmer been chasing for.
To ensure the context remained relevant, a timer was im-
plemented to keep certain context active for only a few
seconds, ensuring that context remained relevant to in-
game events.

Once context is prepared, a prompt is randomly se-
lected and they are sent to OpenATI’s servers via Unity’s
UnityWebRequest class. The process begins with the cre-
ation of an OpenAlIRequest object, which is serialised into
JSON and sent as part of the HT'TP POST request to the
API. The system then awaits a response and parses it -
removing any unnecessary characters and ensuring the di-
alogue fits within a required length (5 - 67 characters). If
the response doesn’t meet these conditions, the request
is tried again, up to a maximum of two attempts. If
both retries fail, a fallback message is used. The dialogue
generation also includes a 50% chance that the farmer re-
sponds to previous dialogue, allowing for continuity and
making the game feel more immersive.

8.2.3 API Key Security

In order to prevent accidental exposure of the API key,
the key is stored in a separate script which is excluded
from the github repo via the .gitignore file. This basic
security measure reduces the risk of the API key being
publicly accessible, keeping credits safe.

8.2.4 Performance Optimisation

To optimise performance, we limited the number of API
calls by ensuring only the closest two farmers request di-
alogue, with a timer in place to ensure a farmer’s dia-
logue continued to be active despite any abrupt changes
of farmers swapping closeness. This reduced the number
of overall calls being made and the amount of visual clut-
ter on screen. Dialogue was also limited to a manageable
length by setting maximum tokens to 18, ensuring the
model didn’t exceed the desired length.

8.2.5 Future considerations

Whilst developing this we considered using a smaller
LLM, such as Meta’s LLama, which could be stored lo-
cally and wouldn’t require API credits. This option would
have reduced the reliance on external services and poten-
tially lowered latency, which would which would be useful
for a future version of our game if we wanted to pub-
lish it with this feature. However, we decided against it

for Games Day, due to the limitations of smaller mod-
els, trained on less parameters,as they are less capable of
generating the high quality dialogue that gpt-4o mini pro-
vides. Additionally, local models would be large in size
and would have significantly increased our game’s down-
load size.

We also explored the possibility of integrating the
Model Context Protocol (MCP) to enhance the game’s AT
interaction. MCP could allow for seamless integration of
LLMs with the game environments by enabling Al agents
to access full game data (e.g. player stats or map layout)
to help them make more informed decisions with more
context. While we ran out of time to implement this into
the game, it remains a promising area for future develop-
ment, offering potential for greater Al adaptability and
more interactive gameplay.

8.3 Choke Point Detection

Being able to detect choke points was essential for the
choke group behaviour to be able to exist. Choke points
across the map were detected as follows. Firstly the world
is split into 0.5 by 0.5 meter voxels across the ground. For
each voxel, 16 pairs of raycasts are projected out in a cir-
cle around the centre of the voxel in opposite directions,
each one going 4 meters. A pair is considered blocked if
both raycasts intersect an object on the ground or default
layer. If more than 4 pairs are blocked then the voxel is
considered to be choke point and is added to a list of raw
chokepoints (Figure 17).

Figure 17: Figure shows the raw choke points as blue
spheres calculated on the test map.

The raw choke points are then clustered by taking any
raw choke point and if it is within 5 meters of a cluster
and has line of sight to it then it is added to that cluster,
if not it creates a new cluster and adds itself to the clus-
ter (Figure 18). Once all of the raw choke points have
been considered then the mean locations of each cluster
is considered to be the final set of choke points.

24

Figure 18: Figure shows the clustered choke points as red
spheres calculated on the test map.

It took multiple attempts to create this system. The
first attempt used the navmesh data and would place
points along its edges, based on the edges length. Due
to the way that navmeshes are created this lead to choke
points existing in open spaces so this method was aban-
doned.

Another failed approach was to randomly sample the
walkable area in the scene, however due to the indeter-
minate nature of this it was difficult to test and adjust
the constants to work reliably. The only advantage this
method has over the chosen one is it is much less compu-
tationally expensive, however since this is not calculated
at runtime and the result is written into the game files,
computational resources were not a concern. This method
ultimately lead to the chosen method with voxels.

Clustering was used because it would not be uncommon is
tight spaces or corners to have +10 clusters in extremely
close proximity. This lead to odd looking behaviour as
the blocker agent (see more in Al Manager and Group
Behaviours) would always pick a choke point on the edge
leading them to jam themselves tightly against surfaces.
This looked odd and lead to bizarre pathfinding so instead
the points were clustered. This prevented that behaviour.

8.4 General Game Architecture
8.4.1 Assemblies

Assembly definitions were used to separate the code into
assemblies, creating barriers between unrelated or loosely
related code, as well as speeding up compilation times as
only scripts within the same or dependent assembly need
to be recompiled on changes. The different assemblies
are: Core Gameplay, Enemy Behaviours, Gameplay UlI,
Main Menu UI, Player, Minor Gameplay and Utilities.
These assemblies were chosen as they break the code
into logical sections which should not be dependent upon
each other (Figure 19). This improved development as
it prevented ”spaghetti” code, making it much easier for
team mates to read each others code and fix bugs.

Core

| Utilities Menu Ul
| Gameplay |
| v
Minor
[Player
| Gameplay
Enemy I | .
| Gameplay Ul

Behaviours | |
Figure 19: Figure shows the dependencies between the
different assemblies. The red arrows point to the assem-
bly that the source is dependent on.

8.4.2 Game Manager and INotify

The Game Manager is a crucial component of the game,
which is responsible for managing the game state and
coordinating each component of the game. The Game
Manager is in the Core Gameplay Assembly. The ob-
server pattern was used to allow the game manager to
send events to the components of the game. These events
include but aren’t limited to: Game Over, Start Cutscene,
Show Map, Update UI, Concuss Chicken and so forth.
Any components that need to subscribe to the Game
Manager and listen for events implements the INotify in-
terface. This allowed the code base to remain modular as
it reduced the need for dependencies and massively sim-
plified the coordination of components in the game. This
also improved the performance as components no longer
need to use polling to collect information and instead lis-
ten for events.

8.4.3 Player

The Architecture of the player is fairly simple. First is a
player game object which has the following children: the
main camera, player character and the cinemachine free
look components (Cinemachine is a Unity package which
provides advanced camera controllers). The player char-
acter is a gameobject that contains the player movement,
shoot, cluck and other player scripts. The player charac-
ter has children which include the mesh and bones of the
chicken, its map icon, and the location for the chicken to
shoot eggs from. The Player was created like this so that
it can be turned into a prefab and drag and dropped into
any scene, with all the components it needs already on it.
This improved the testing and development workflows.

8.4.4 Gameplay Ul

The gameplay Ul is a canvas that contains the UI el-
ements of the game during gameplay. It has 7 panels
which are: HUD, Pause, Map, Won, Lost, Tutorial and
Objectives. The GameplayUI has a script that manages
all the panels and has functions that can be used as call-
backs when a button is pressed. Only one panel can be
active at a time. This is also a prefab like the player and
was also created in such a way to allow it to be drag and

25

dropped into any scene which also improved the testing
and development workflows.

8.4.5 AI

The AI Manager subscribes to the Game Manager for
events. Each agent subscribes to the AI Manager for
events. If needed events will propagate from the Game
Manager through the AI Manager and to the agents, this
was done so that the agents did not need to implement
multiple interfaces and subscribe to multiple components
to be able to receive all the notifications, simplifying the
code base. This system means that as long as an Al
Manager and agents are in the scene they are capable
of running independently of every other element of the
game, which also improved the testing and development.

8.5 Performance, Profiling and Optimi-
sation

8.5.1 Performance

The performance of a game significantly effects a players
enjoyment of the game. In extreme cases it can effect the
playability and the way players play, potentially putting
them at an advantage or disadvantage [8].

The concept of frame times will be important for this sec-
tion. A brief overview is that a frame time is the time it
takes for a single frame of the game to be executed. This
includes all the code that needs execution and all render-
ing on both the CPU and GPU. For reference 16.6ms is
60 frames per second and is an industry standard target
for smooth gaming. 33.3ms is 30 frames per second and
is considered to be the lowest you should go [9] as the
performance is not consistent and can spike for various
reasons which will lead to major stuttering, breaking im-
mersion. Higher frame rates are good as they improve the
visual quality of the game. Movements appear smoother
during gameplay and it also reduces the effect of screen
tearing. Screen tearing occurs when the frame rate of
the game and frequency of the display are not aligned
and the display is halfway through drawing a frame to
the screen when a new frame is drawn to the buffer it is
reading from by the GPU. [§]

Throughout development, performance was never a large
issue so we did not spend a lot of time optimising the
game. If we needed to optimise, it is likely that to op-
timise the CPU, we would have utilised the jobs system
for parallelisation and the burst compiler to remove the
majority of C#’s overhead. This would be at the cost
of memory safety and ease of implementing new features
but has the capability to improve performance by several
orders of magnitude. For the GPU implementing a Level
Of Detail system to reduce the number of vertices would
provide massive benefit, as well as combining meshes
to reduce the number of batches and draw calls, which
would also help reduce overhead. To reduce VRAM us-
age, compressing textures would provide large benefit as
currently they are using 1.52 GB of VRAM on the GPU
which is significantly more than it needs to maintain vi-
sual fidelity. To optimise RAM usage, music audio files

can be loaded from storage as needed and removed after
use instead of all in one go on start. This adds a little
CPU overhead and potential lag so it is not recommended
to do this for sound effects. Reducing triangle count and
compressing images and would also help.

The average specs of a player’s machine matter as well.
The Steam Hardware & Software Survey [10] has in-
formation the percentage of players that meet a specific
specification for example processor count, processor speed
and memory. This information in conjunction with pro-
filing can be used to determine where the most impactful
optimisations can be made.

8.5.2 Profiling

Profiling was done on a Windows 11 PC that has a Ryzen
7800x3D CPU, RTX 4070 Super GPU and 32GB of RAM.
Analysing the performance through the profiler shows for
each frame, 20.601ms were spent processing on the CPU
and only 13.254ms were spent on the GPU during exe-
cution. This means that to improve the frame rate, the
CPU time has to be reduced through optimisations. Fur-
ther analysis revealed that on the CPU the main thread
is the bottle neck and that the rendering thread and
jobs thread are idle the vast majority of the time. This
means that the majority of the performance gains can
be achieved through further optimising execution on the
main thread. There is also an immediate opportunity
for optimisation by shifting anything that doesn’t need
to be executed on the main thread to the jobs thread,
significantly reducing the CPU time.

Of the 20.601lms, 0.6ms were spent on functions in
fixed update, 2.14ms on Update, 0.53ms on late update,
14.31ms on the render loop and the majority of the rest
(2.23 ms) was spent on the editor loop. Some important
notes about these results: The editor loop only exists
when running in the editor so there will be an immediate
small performance boost when the game is built; Profil-
ing adds a reasonable amount of CPU overhead. When
the profiler is deactivated the CPU frame time is closer
to 10ms and when activated it jumped to 20ms. Between
these it is plausible that in a built version of the game
the GPU will be the bottle neck and not the CPU.

Figure 20: Figure shows a screenshot of the functions the
CPU ran on the main thread during a single frame and
the time it took to execute each one.

The game allocates 5.64GB of memory and used 3.79GB
of memory. Allocated memory is not constrained to the

26

exact amount of RAM a system has due to paging and
other memory management techniques. Regardless both
of these values are significantly below the median RAM
of 16GB so this will not be a bottleneck. [10]

At the moment there are 15.7 million vertices in the
scene. Reducing this count would greatly improve the
GPU performance. To optimise the VRAM usage, us-
ing smaller textures will provide the largest benefit as
currently textures are taking up 1.52GB of VRAM com-
pared to the 400MB of meshes and 3.5MB of materials.
The VRAM usage is still considerably lower than the me-
dian of 6GB. [10]

8.5.3 CPU Optimisation

Each agent has a detector class and each detector class
runs the proximity and visual scan functions. Originally
this would run every frame, which was quite computa-
tionally expensive. We changed this so that instead it
would run every 1/10th of a second, which still gave the
appearance of instant detection of the player, whilst cut-
ting down the number of time it executes dramatically.
The exact performance saving depends on the machine
used as computers with higher single core performance
will be able to achieve higher frame rates and thus more
benefit from this. However as an example if a machine
is running the game at 60 frames per second, this would
reduce the number of times the scan is executed from 60
to 6 times a second. When executed on the same machine
used for profiling, this reduced the time that the detector
scripts spent executing on the main thread from 0.98ms
down to 0.01ms, representing a 99% decrease.

Another major optimisation comes from the use of the
Observer pattern and events. This reduced or eliminated
the need for polling which considerably improves the per-
formance of the game.

8.5.4 GPU Optimisation

To improve the performance of rendering we made use
of a few easy to implement features of unity. Firstly is
occlusion culling, in which every object that is not con-
tained inside the frustum of the active camera is not send
to be rendered as it cannot be seen. This reduces the
amount of data that needs to be passed to the GPU from
the CPU, saving a lot of time.

Static objects were marked as static. This allows unity
to optimise by using batching. Batching is when several
meshes are merged together to reduce the number of draw
calls, reducing the amount of overhead when rendering.

8.6 User Experience
8.6.1 Tutorial area

After some user testing it was suggested that we make a
tutorial to help the players get used to the controls of the
game. We decided to put the player in a locked chicken
coop and walk them through the controls at the start of
the game. Each control is displayed on the screen until the
player performs the action. Once complete it moves onto

the next action. This goes on until the end of the tutorial
where the player is prompted to look at the back of the
coop. On the wall there are images with information and
instructions about the farm, such as a map, enemy types,
weaknesses, and information on the keys. The tutorial
can be skipped with tab for the more experienced play-
ers. The inclusion of a tutorial massively improved the
onboarding experience and allowed for players to quickly
pick up the controls improving their skill level and the
enjoyment of the game as a whole.

8.6.2 Scoring System

Originally the scoring system was purely based on time.
It encouraged the players to speed run the game to get
the best score possible. However we determined that this
system was not as fun as it could be since it didn’t al-
low players the option to explore and find as many keys
as possible. It also heavily favoured those who are al-
ready familiar with playing games. Finally is reduced the
replayability of the game as once complete it provided
little incentive for the player to try something new to im-
prove their score. To alleviate these issues, the system
was altered so that the players would be scored on how
many keys they collected as well as their time and num-
ber of deaths (see more on respawning in Multiple Lives).
This allowed players to play in multiple ways. They could
speed run and collect points for achieving a fast time or
they can explore and get points for finding lots of the
keys. This allows for player of all skills to play and enjoy
the game. It also improves the replayability as there are
now multiple ways to play.

8.6.3 Multiple lives

We found that the original instant death system was too
harsh. It was annoying for both experienced and inexpe-
rienced players as it would take a single mistake to end
a run or if you weren’t particularly good it became al-
most impossible to complete the game. To remedy this
we added respawning. This was integrated with the new
score system by taking away 100 points per extra life you
needed. Respawns are disabled in the final sequence of the
game, after the electric box is disabled, to add an extra
element of danger and risk-reward for those tempted to
continue exploring. This massively improves the game-
play experience as now getting unlucky will not end a
run, reducing the frustration caused by that. It also as-
sists new players in being able to beat the game as they
no longer have to collect all the keys and escape in one
life.

8.6.4 Objective Panel

Through user testing, we found that it is important that
the player is aware of their relative location. To provide
this, we built a panel that would show the current objec-
tive and a live map. The live map included the location
of the keys, tractor locations and the player’s direction.
The location of the electric box and gate appear when
their respective objective is active. This was achieved

27

by implementing an orthogonal camera overlooking the
map (Figure 21). Icons are displayed in the sky in the
form of sprites and using layers would only be rendered
by the map camera. The camera view was then output
to a render texture in the objective panel.

Map Camera l

Orthogonal Projection p= —

Object lcons E
: 1

Game Map —

Figure 21: 2D Diagram of the projection of the game map
onto the map camera.

8.6.5 Objectives UI Popup

Following feedback from the second testathon, it was clear
to that players needed more guidance on when they had
completed specific objectives. To address this we imple-
mented a Ul screen that pops up for 5 seconds when a
player reaches a milestone, such as being able to open
the electric box after collecting enough keys or once the
cutscene ends and they can escape the farm. This popup
helps the player understand their progress in-game, with-
out having to interrupt gameplay to ask us what to do
next.

8.7 Animations, Graphics and Sound
8.7.1 Models and Assets

We wanted our game to have a fun unique feel. We de-
cided on using low poly cartoon style graphics as it fit
the theme nicely and it is relatively easy to achieve. We
wanted some assets to be custom made but also acknowl-
edged due to the time constraints that it would not be
possible for us to make custom assets for every part of
the game. We focused on creating assets for the most
pivotal aspects of the game. These were: The chicken,
Farmer, Dog, Coop and Electric box (Figure 22). Ev-
ery other model was acquired off the Unity asset store
through various asset packs.

T

Figure 22: Figure shows the chicken (left), the farmer
(middle) and the dog (right) models.

8.7.2 Lighting, Reflections and Shadows

Lighting is essential for altering the look and theme of
a game. It can also have a major impact on the per-
formance of the game. The colour and intensity of the
lighting changes throughout the day and night cycle. We
decided to use a mix of real-time and baked lighting to
uphold visual fidelity whilst balancing the performance.
All static objects in the scene have baked lighting, mean-
ing that their shadows are stored in a shadow map. The
shadow map had its maximum size set to 2048 x 2048 to
limit the amount of memory that it would take to store
it in VRAM. This baked lighting is combined with real
time lighting from the day and night cycle to create the
lighting for the scene.

The lighting settings were altered to disable real-time
global illumination, which adds more realistic lighting at
the cost of performance, and enable ambient occlusion
which adds shadows to surfaces which are near another
object, adding to the cartoon style look. The lightmaps
were limited to 1024 x 1024 for similar reasons to the
shadowmaps.

In interior spaces reflection probes where utilised to im-
prove the accuracy of the lighting. By default it uses the
sky box for approximate reflections which was undesir-
able as the reflections were extremely bright compared to
the darker interiors. The reflection probes were baked to
improve performance at the cost of VRAM.

8.7.3 Post Processing

Post Processing was used to further improve the visual
quality of the game. Firstly an ACES Tonemapper was
used to adjust the brightness and contrast of the image
to preserve details in the image, which especially helps in
the transition between interior and exterior spaces. Next
Bloom was added. This adds blur to exceptionally bright
areas of the image and can make objects like the keys
7glow” without using emissive materials. Finally a subtle
vignette was added to direct the players attention away
from the edges of the screen. The effect of these effects
combined is subtle but contributes to a more natural and
visually pleasing gaming experience (Figure 23).

28

@ Sign.com Document ID: 7a3878173a - Page 29/30

Figure 23: Figure shows the scene with post processing
disabled (Top) and then enabled (Bottom).

8.8 Music and Sound Effects

The music for the project was created by composers from
the Music Department. We worked closely with them
over the course of the project to ensure that the produced
music fit the theme and worked well with the game me-
chanics. One such example is having the music play in
layers, with different layers active depending on how far
from the player the Al agents were. In the end we re-
ceived music for the Main Menu, gameplay, tutorial and
final chase sequence.

For the sound effects, these were downloaded from Pix-
abay’s free sound effects library [11]. Similar to the mod-
els we would have loved to make our own but time con-
straints forced us to prioritise on the rest of the content
in the game.

References

[1]

2]

[10]

[11]

J. S. J. Hocking, Unity in Action: multiplatform game development in C#, third edition ed. Manning Publi-
cations Co, 2022.

T. Autonomous. (2023, February) Exactly how the hungarian algorithm works. Accessed: 2025-04-25. [Online].
Available: https://www.thinkautonomous.ai/blog/hungarian-algorithm/

B. Driessen, “A successful git branching model.” [Online]. Available: https://nvie.com/posts/
a-successful-git-branching-model/

F. Fugative, “Feathered fugative documentation.” [Online]. Available: https://ed22699.github.io/
FeatheredFugitivesDocs/

Nintendo, “Super mario bros.” Video Game, Japan, 1985, released for the Nintendo Entertainment System
(NES).

T. Tovmasyan, “Ai and pac-man: A story of ghosts’ intelligence,” https://tateviktome-tovmasyan.medium.
com/ai-and-pacman-a-story-of-ghosts-intelligence-d2f296¢31675, 2021, accessed: March 20, 2025.

R. M. K. Jack Edmonds, “Theoretical improvements in algorithmic efficiency for network flow problems,”
https://dl.acm.org/doi/10.1145/321694.321699, 1972, accessed: April 12, 2025.

T. Tamasi, “Why does high fps matter for esports?” https://www.nvidia.com/en-us/geforce/news/
what-is-fps-and-how-it-helps-you-win-games/, 2019, accessed: April 11, 2025.

I. A. F. Rate, “Information about frame rate,” https://www.logicalincrements.com/articles/framerate, 2023,
accessed: April 11, 2025.

S. H. . S. S. M. 2025, “Steam hardware software survey: March 2025,” https://store.steampowered.com/
hwsurvey /Steam-Hardware-Software-Survey- Welcome-to-Steam, 2023, accessed: April 11, 2025.

Pixabay, “Royalty-free sound effects for download,” https://pixabay.com/sound-effects/.

29

	Signed Declaration
	Top Five Contributions
	Nine Aspects
	Team Process
	Technical Understanding
	Flagship Technology Delivered
	Implementation & Software
	Tools, Development & Testing
	Game Playability
	Look & Feel
	Uniqueness & Innovation
	Report & Documentation

	Abstract
	Overview
	Gameplay Loop
	AI Enemies
	Key System
	Score

	The Team Process and Project Planning
	Weekly Meetings
	Brainstorming Sessions
	Conflict Resolution
	Agile Sprints
	Planning
	Integration
	Project Management
	Skill Allocation
	Reflection

	Individual Contributions
	Sonny Cooper
	Dylan Quinton
	Alexander Horsman
	Charlie Nasiadka
	Jack Wayt
	Xin Yan Lim

	Software, Tools, and Development
	Development Software & Tools
	Unity
	Blender
	GIMP
	GitHub

	Development Process & Software Maintenance
	Testing
	User Testing
	User Feedback

	Technical Content
	AI
	AI Overview
	Orders
	Detector class
	AI Manager and Group Behaviours
	Behaviour Trees
	Balancing
	Visualisation
	Visual Audio

	Open AI Dialogue
	System Overview
	API Interaction
	API Key Security
	Performance Optimisation
	Future considerations

	Choke Point Detection
	General Game Architecture
	Assemblies
	Game Manager and INotify
	Player
	Gameplay UI
	AI

	Performance, Profiling and Optimisation
	Performance
	Profiling
	CPU Optimisation
	GPU Optimisation

	User Experience
	Tutorial area
	Scoring System
	Multiple lives
	Objective Panel
	Objectives UI Popup

	Animations, Graphics and Sound
	Models and Assets
	Lighting, Reflections and Shadows
	Post Processing

	Music and Sound Effects

		2025-04-27T21:04:41+0000
	1014:Client Cert

